blob: f3da610565c447fc5e0d70f51730687f94298ae8 [file] [log] [blame]
use std::{borrow::Cow, rc::Rc};
use askama::Template;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::{def::CtorKind, def_id::DefIdSet};
use rustc_middle::ty::{self, TyCtxt};
use crate::{
clean,
formats::{item_type::ItemType, Impl},
html::{format::Buffer, markdown::IdMap},
};
use super::{item_ty_to_section, Context, ItemSection};
#[derive(Template)]
#[template(path = "sidebar.html")]
pub(super) struct Sidebar<'a> {
pub(super) title_prefix: &'static str,
pub(super) title: &'a str,
pub(super) is_crate: bool,
pub(super) version: &'a str,
pub(super) blocks: Vec<LinkBlock<'a>>,
pub(super) path: String,
}
impl<'a> Sidebar<'a> {
/// Only create a `<section>` if there are any blocks
/// which should actually be rendered.
pub fn should_render_blocks(&self) -> bool {
self.blocks.iter().any(LinkBlock::should_render)
}
}
/// A sidebar section such as 'Methods'.
pub(crate) struct LinkBlock<'a> {
/// The name of this section, e.g. 'Methods'
/// as well as the link to it, e.g. `#implementations`.
/// Will be rendered inside an `<h3>` tag
heading: Link<'a>,
links: Vec<Link<'a>>,
/// Render the heading even if there are no links
force_render: bool,
}
impl<'a> LinkBlock<'a> {
pub fn new(heading: Link<'a>, links: Vec<Link<'a>>) -> Self {
Self { heading, links, force_render: false }
}
pub fn forced(heading: Link<'a>) -> Self {
Self { heading, links: vec![], force_render: true }
}
pub fn should_render(&self) -> bool {
self.force_render || !self.links.is_empty()
}
}
/// A link to an item. Content should not be escaped.
#[derive(PartialOrd, Ord, PartialEq, Eq, Hash, Clone)]
pub(crate) struct Link<'a> {
/// The content for the anchor tag
name: Cow<'a, str>,
/// The id of an anchor within the page (without a `#` prefix)
href: Cow<'a, str>,
}
impl<'a> Link<'a> {
pub fn new(href: impl Into<Cow<'a, str>>, name: impl Into<Cow<'a, str>>) -> Self {
Self { href: href.into(), name: name.into() }
}
pub fn empty() -> Link<'static> {
Link::new("", "")
}
}
pub(super) fn print_sidebar(cx: &Context<'_>, it: &clean::Item, buffer: &mut Buffer) {
let blocks: Vec<LinkBlock<'_>> = match *it.kind {
clean::StructItem(ref s) => sidebar_struct(cx, it, s),
clean::TraitItem(ref t) => sidebar_trait(cx, it, t),
clean::PrimitiveItem(_) => sidebar_primitive(cx, it),
clean::UnionItem(ref u) => sidebar_union(cx, it, u),
clean::EnumItem(ref e) => sidebar_enum(cx, it, e),
clean::TypedefItem(_) => sidebar_typedef(cx, it),
clean::ModuleItem(ref m) => vec![sidebar_module(&m.items)],
clean::ForeignTypeItem => sidebar_foreign_type(cx, it),
_ => vec![],
};
// The sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
let (title_prefix, title) = if it.is_struct()
|| it.is_trait()
|| it.is_primitive()
|| it.is_union()
|| it.is_enum()
|| it.is_mod()
|| it.is_typedef()
{
(
match *it.kind {
clean::ModuleItem(..) if it.is_crate() => "Crate ",
clean::ModuleItem(..) => "Module ",
_ => "",
},
it.name.as_ref().unwrap().as_str(),
)
} else {
("", "")
};
let version =
if it.is_crate() { cx.cache().crate_version.as_deref().unwrap_or_default() } else { "" };
let path: String = if !it.is_mod() {
cx.current.iter().map(|s| s.as_str()).intersperse("::").collect()
} else {
"".into()
};
let sidebar = Sidebar { title_prefix, title, is_crate: it.is_crate(), version, blocks, path };
sidebar.render_into(buffer).unwrap();
}
fn get_struct_fields_name<'a>(fields: &'a [clean::Item]) -> Vec<Link<'a>> {
let mut fields = fields
.iter()
.filter(|f| matches!(*f.kind, clean::StructFieldItem(..)))
.filter_map(|f| {
f.name.as_ref().map(|name| Link::new(format!("structfield.{name}"), name.as_str()))
})
.collect::<Vec<Link<'a>>>();
fields.sort();
fields
}
fn sidebar_struct<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
s: &'a clean::Struct,
) -> Vec<LinkBlock<'a>> {
let fields = get_struct_fields_name(&s.fields);
let field_name = match s.ctor_kind {
Some(CtorKind::Fn) => Some("Tuple Fields"),
None => Some("Fields"),
_ => None,
};
let mut items = vec![];
if let Some(name) = field_name {
items.push(LinkBlock::new(Link::new("fields", name), fields));
}
sidebar_assoc_items(cx, it, &mut items);
items
}
fn sidebar_trait<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
t: &'a clean::Trait,
) -> Vec<LinkBlock<'a>> {
fn filter_items<'a>(
items: &'a [clean::Item],
filt: impl Fn(&clean::Item) -> bool,
ty: &str,
) -> Vec<Link<'a>> {
let mut res = items
.iter()
.filter_map(|m: &clean::Item| match m.name {
Some(ref name) if filt(m) => Some(Link::new(format!("{ty}.{name}"), name.as_str())),
_ => None,
})
.collect::<Vec<Link<'a>>>();
res.sort();
res
}
let req_assoc = filter_items(&t.items, |m| m.is_ty_associated_type(), "associatedtype");
let prov_assoc = filter_items(&t.items, |m| m.is_associated_type(), "associatedtype");
let req_assoc_const =
filter_items(&t.items, |m| m.is_ty_associated_const(), "associatedconstant");
let prov_assoc_const =
filter_items(&t.items, |m| m.is_associated_const(), "associatedconstant");
let req_method = filter_items(&t.items, |m| m.is_ty_method(), "tymethod");
let prov_method = filter_items(&t.items, |m| m.is_method(), "method");
let mut foreign_impls = vec![];
if let Some(implementors) = cx.cache().implementors.get(&it.item_id.expect_def_id()) {
foreign_impls.extend(
implementors
.iter()
.filter(|i| !i.is_on_local_type(cx))
.filter_map(|i| super::extract_for_impl_name(&i.impl_item, cx))
.map(|(name, id)| Link::new(id, name)),
);
foreign_impls.sort();
}
let mut blocks: Vec<LinkBlock<'_>> = [
("required-associated-types", "Required Associated Types", req_assoc),
("provided-associated-types", "Provided Associated Types", prov_assoc),
("required-associated-consts", "Required Associated Constants", req_assoc_const),
("provided-associated-consts", "Provided Associated Constants", prov_assoc_const),
("required-methods", "Required Methods", req_method),
("provided-methods", "Provided Methods", prov_method),
("foreign-impls", "Implementations on Foreign Types", foreign_impls),
]
.into_iter()
.map(|(id, title, items)| LinkBlock::new(Link::new(id, title), items))
.collect();
sidebar_assoc_items(cx, it, &mut blocks);
blocks.push(LinkBlock::forced(Link::new("implementors", "Implementors")));
if t.is_auto(cx.tcx()) {
blocks.push(LinkBlock::forced(Link::new("synthetic-implementors", "Auto Implementors")));
}
blocks
}
fn sidebar_primitive<'a>(cx: &'a Context<'_>, it: &'a clean::Item) -> Vec<LinkBlock<'a>> {
if it.name.map(|n| n.as_str() != "reference").unwrap_or(false) {
let mut items = vec![];
sidebar_assoc_items(cx, it, &mut items);
items
} else {
let shared = Rc::clone(&cx.shared);
let (concrete, synthetic, blanket_impl) =
super::get_filtered_impls_for_reference(&shared, it);
sidebar_render_assoc_items(cx, &mut IdMap::new(), concrete, synthetic, blanket_impl).into()
}
}
fn sidebar_typedef<'a>(cx: &'a Context<'_>, it: &'a clean::Item) -> Vec<LinkBlock<'a>> {
let mut items = vec![];
sidebar_assoc_items(cx, it, &mut items);
items
}
fn sidebar_union<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
u: &'a clean::Union,
) -> Vec<LinkBlock<'a>> {
let fields = get_struct_fields_name(&u.fields);
let mut items = vec![LinkBlock::new(Link::new("fields", "Fields"), fields)];
sidebar_assoc_items(cx, it, &mut items);
items
}
/// Adds trait implementations into the blocks of links
fn sidebar_assoc_items<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
links: &mut Vec<LinkBlock<'a>>,
) {
let did = it.item_id.expect_def_id();
let cache = cx.cache();
let mut assoc_consts = Vec::new();
let mut methods = Vec::new();
if let Some(v) = cache.impls.get(&did) {
let mut used_links = FxHashSet::default();
let mut id_map = IdMap::new();
{
let used_links_bor = &mut used_links;
assoc_consts.extend(
v.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_associated_constants(i.inner_impl(), used_links_bor)),
);
// We want links' order to be reproducible so we don't use unstable sort.
assoc_consts.sort();
#[rustfmt::skip] // rustfmt makes the pipeline less readable
methods.extend(
v.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), false, used_links_bor, false, cx.tcx())),
);
// We want links' order to be reproducible so we don't use unstable sort.
methods.sort();
}
let mut deref_methods = Vec::new();
let [concrete, synthetic, blanket] = if v.iter().any(|i| i.inner_impl().trait_.is_some()) {
if let Some(impl_) =
v.iter().find(|i| i.trait_did() == cx.tcx().lang_items().deref_trait())
{
let mut derefs = DefIdSet::default();
derefs.insert(did);
sidebar_deref_methods(
cx,
&mut deref_methods,
impl_,
v,
&mut derefs,
&mut used_links,
);
}
let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) =
v.iter().partition::<Vec<_>, _>(|i| i.inner_impl().kind.is_auto());
let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) =
concrete.into_iter().partition::<Vec<_>, _>(|i| i.inner_impl().kind.is_blanket());
sidebar_render_assoc_items(cx, &mut id_map, concrete, synthetic, blanket_impl)
} else {
std::array::from_fn(|_| LinkBlock::new(Link::empty(), vec![]))
};
let mut blocks = vec![
LinkBlock::new(Link::new("implementations", "Associated Constants"), assoc_consts),
LinkBlock::new(Link::new("implementations", "Methods"), methods),
];
blocks.append(&mut deref_methods);
blocks.extend([concrete, synthetic, blanket]);
links.append(&mut blocks);
}
}
fn sidebar_deref_methods<'a>(
cx: &'a Context<'_>,
out: &mut Vec<LinkBlock<'a>>,
impl_: &Impl,
v: &[Impl],
derefs: &mut DefIdSet,
used_links: &mut FxHashSet<String>,
) {
let c = cx.cache();
debug!("found Deref: {impl_:?}");
if let Some((target, real_target)) =
impl_.inner_impl().items.iter().find_map(|item| match *item.kind {
clean::AssocTypeItem(box ref t, _) => Some(match *t {
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
}),
_ => None,
})
{
debug!("found target, real_target: {target:?} {real_target:?}");
if let Some(did) = target.def_id(c) &&
let Some(type_did) = impl_.inner_impl().for_.def_id(c) &&
// `impl Deref<Target = S> for S`
(did == type_did || !derefs.insert(did))
{
// Avoid infinite cycles
return;
}
let deref_mut = v.iter().any(|i| i.trait_did() == cx.tcx().lang_items().deref_mut_trait());
let inner_impl = target
.def_id(c)
.or_else(|| {
target.primitive_type().and_then(|prim| c.primitive_locations.get(&prim).cloned())
})
.and_then(|did| c.impls.get(&did));
if let Some(impls) = inner_impl {
debug!("found inner_impl: {impls:?}");
let mut ret = impls
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), true, used_links, deref_mut, cx.tcx()))
.collect::<Vec<_>>();
if !ret.is_empty() {
let id = if let Some(target_def_id) = real_target.def_id(c) {
Cow::Borrowed(
cx.deref_id_map
.get(&target_def_id)
.expect("Deref section without derived id")
.as_str(),
)
} else {
Cow::Borrowed("deref-methods")
};
let title = format!(
"Methods from {:#}<Target={:#}>",
impl_.inner_impl().trait_.as_ref().unwrap().print(cx),
real_target.print(cx),
);
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
out.push(LinkBlock::new(Link::new(id, title), ret));
}
}
// Recurse into any further impls that might exist for `target`
if let Some(target_did) = target.def_id(c) &&
let Some(target_impls) = c.impls.get(&target_did) &&
let Some(target_deref_impl) = target_impls.iter().find(|i| {
i.inner_impl()
.trait_
.as_ref()
.map(|t| Some(t.def_id()) == cx.tcx().lang_items().deref_trait())
.unwrap_or(false)
})
{
sidebar_deref_methods(
cx,
out,
target_deref_impl,
target_impls,
derefs,
used_links,
);
}
}
}
fn sidebar_enum<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
e: &'a clean::Enum,
) -> Vec<LinkBlock<'a>> {
let mut variants = e
.variants()
.filter_map(|v| v.name)
.map(|name| Link::new(format!("variant.{name}"), name.to_string()))
.collect::<Vec<_>>();
variants.sort_unstable();
let mut items = vec![LinkBlock::new(Link::new("variants", "Variants"), variants)];
sidebar_assoc_items(cx, it, &mut items);
items
}
pub(crate) fn sidebar_module_like(
item_sections_in_use: FxHashSet<ItemSection>,
) -> LinkBlock<'static> {
let item_sections = ItemSection::ALL
.iter()
.copied()
.filter(|sec| item_sections_in_use.contains(sec))
.map(|sec| Link::new(sec.id(), sec.name()))
.collect();
LinkBlock::new(Link::empty(), item_sections)
}
fn sidebar_module(items: &[clean::Item]) -> LinkBlock<'static> {
let item_sections_in_use: FxHashSet<_> = items
.iter()
.filter(|it| {
!it.is_stripped()
&& it
.name
.or_else(|| {
if let clean::ImportItem(ref i) = *it.kind &&
let clean::ImportKind::Simple(s) = i.kind { Some(s) } else { None }
})
.is_some()
})
.map(|it| item_ty_to_section(it.type_()))
.collect();
sidebar_module_like(item_sections_in_use)
}
fn sidebar_foreign_type<'a>(cx: &'a Context<'_>, it: &'a clean::Item) -> Vec<LinkBlock<'a>> {
let mut items = vec![];
sidebar_assoc_items(cx, it, &mut items);
items
}
/// Renders the trait implementations for this type
fn sidebar_render_assoc_items(
cx: &Context<'_>,
id_map: &mut IdMap,
concrete: Vec<&Impl>,
synthetic: Vec<&Impl>,
blanket_impl: Vec<&Impl>,
) -> [LinkBlock<'static>; 3] {
let format_impls = |impls: Vec<&Impl>, id_map: &mut IdMap| {
let mut links = FxHashSet::default();
let mut ret = impls
.iter()
.filter_map(|it| {
let trait_ = it.inner_impl().trait_.as_ref()?;
let encoded =
id_map.derive(super::get_id_for_impl(&it.inner_impl().for_, Some(trait_), cx));
let prefix = match it.inner_impl().polarity {
ty::ImplPolarity::Positive | ty::ImplPolarity::Reservation => "",
ty::ImplPolarity::Negative => "!",
};
let generated = Link::new(encoded, format!("{prefix}{:#}", trait_.print(cx)));
if links.insert(generated.clone()) { Some(generated) } else { None }
})
.collect::<Vec<Link<'static>>>();
ret.sort();
ret
};
let concrete = format_impls(concrete, id_map);
let synthetic = format_impls(synthetic, id_map);
let blanket = format_impls(blanket_impl, id_map);
[
LinkBlock::new(Link::new("trait-implementations", "Trait Implementations"), concrete),
LinkBlock::new(
Link::new("synthetic-implementations", "Auto Trait Implementations"),
synthetic,
),
LinkBlock::new(Link::new("blanket-implementations", "Blanket Implementations"), blanket),
]
}
fn get_next_url(used_links: &mut FxHashSet<String>, url: String) -> String {
if used_links.insert(url.clone()) {
return url;
}
let mut add = 1;
while !used_links.insert(format!("{url}-{add}")) {
add += 1;
}
format!("{url}-{add}")
}
fn get_methods<'a>(
i: &'a clean::Impl,
for_deref: bool,
used_links: &mut FxHashSet<String>,
deref_mut: bool,
tcx: TyCtxt<'_>,
) -> Vec<Link<'a>> {
i.items
.iter()
.filter_map(|item| match item.name {
Some(ref name) if !name.is_empty() && item.is_method() => {
if !for_deref || super::should_render_item(item, deref_mut, tcx) {
Some(Link::new(
get_next_url(used_links, format!("{typ}.{name}", typ = ItemType::Method)),
name.as_str(),
))
} else {
None
}
}
_ => None,
})
.collect::<Vec<_>>()
}
fn get_associated_constants<'a>(
i: &'a clean::Impl,
used_links: &mut FxHashSet<String>,
) -> Vec<Link<'a>> {
i.items
.iter()
.filter_map(|item| match item.name {
Some(ref name) if !name.is_empty() && item.is_associated_const() => Some(Link::new(
get_next_url(used_links, format!("{typ}.{name}", typ = ItemType::AssocConst)),
name.as_str(),
)),
_ => None,
})
.collect::<Vec<_>>()
}