blob: 523841951b0783c29779c778558ebbaef98fea77 [file] [log] [blame]
//! Canonicalization is used to separate some goal from its context,
//! throwing away unnecessary information in the process.
//!
//! This is necessary to cache goals containing inference variables
//! and placeholders without restricting them to the current `InferCtxt`.
//!
//! Canonicalization is fairly involved, for more details see the relevant
//! section of the [rustc-dev-guide][c].
//!
//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
use super::{CanonicalInput, Certainty, EvalCtxt, Goal};
use crate::solve::canonicalize::{CanonicalizeMode, Canonicalizer};
use crate::solve::{response_no_constraints_raw, CanonicalResponse, QueryResult, Response};
use rustc_data_structures::fx::FxHashSet;
use rustc_index::IndexVec;
use rustc_infer::infer::canonical::query_response::make_query_region_constraints;
use rustc_infer::infer::canonical::CanonicalVarValues;
use rustc_infer::infer::canonical::{CanonicalExt, QueryRegionConstraints};
use rustc_infer::infer::InferCtxt;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::traits::solve::{
ExternalConstraintsData, MaybeCause, PredefinedOpaquesData, QueryInput,
};
use rustc_middle::ty::{
self, BoundVar, GenericArgKind, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
TypeVisitableExt,
};
use rustc_span::DUMMY_SP;
use std::iter;
use std::ops::Deref;
impl<'tcx> EvalCtxt<'_, 'tcx> {
/// Canonicalizes the goal remembering the original values
/// for each bound variable.
pub(super) fn canonicalize_goal<T: TypeFoldable<TyCtxt<'tcx>>>(
&self,
goal: Goal<'tcx, T>,
) -> (Vec<ty::GenericArg<'tcx>>, CanonicalInput<'tcx, T>) {
let opaque_types = self.infcx.clone_opaque_types_for_query_response();
let (goal, opaque_types) =
(goal, opaque_types).fold_with(&mut EagerResolver { infcx: self.infcx });
let mut orig_values = Default::default();
let canonical_goal = Canonicalizer::canonicalize(
self.infcx,
CanonicalizeMode::Input,
&mut orig_values,
QueryInput {
goal,
anchor: self.infcx.defining_use_anchor,
predefined_opaques_in_body: self
.tcx()
.mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
},
);
(orig_values, canonical_goal)
}
/// To return the constraints of a canonical query to the caller, we canonicalize:
///
/// - `var_values`: a map from bound variables in the canonical goal to
/// the values inferred while solving the instantiated goal.
/// - `external_constraints`: additional constraints which aren't expressible
/// using simple unification of inference variables.
#[instrument(level = "debug", skip(self))]
pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
&mut self,
certainty: Certainty,
) -> QueryResult<'tcx> {
let goals_certainty = self.try_evaluate_added_goals()?;
assert_eq!(
self.tainted,
Ok(()),
"EvalCtxt is tainted -- nested goals may have been dropped in a \
previous call to `try_evaluate_added_goals!`"
);
let certainty = certainty.unify_with(goals_certainty);
if let Certainty::OVERFLOW = certainty {
// If we have overflow, it's probable that we're substituting a type
// into itself infinitely and any partial substitutions in the query
// response are probably not useful anyways, so just return an empty
// query response.
//
// This may prevent us from potentially useful inference, e.g.
// 2 candidates, one ambiguous and one overflow, which both
// have the same inference constraints.
//
// Changing this to retain some constraints in the future
// won't be a breaking change, so this is good enough for now.
return Ok(self.make_ambiguous_response_no_constraints(MaybeCause::Overflow));
}
let var_values = self.var_values;
let external_constraints = self.compute_external_query_constraints()?;
let (var_values, mut external_constraints) =
(var_values, external_constraints).fold_with(&mut EagerResolver { infcx: self.infcx });
// Remove any trivial region constraints once we've resolved regions
external_constraints
.region_constraints
.outlives
.retain(|(outlives, _)| outlives.0.as_region().map_or(true, |re| re != outlives.1));
let canonical = Canonicalizer::canonicalize(
self.infcx,
CanonicalizeMode::Response { max_input_universe: self.max_input_universe },
&mut Default::default(),
Response {
var_values,
certainty,
external_constraints: self.tcx().mk_external_constraints(external_constraints),
},
);
Ok(canonical)
}
/// Constructs a totally unconstrained, ambiguous response to a goal.
///
/// Take care when using this, since often it's useful to respond with
/// ambiguity but return constrained variables to guide inference.
pub(in crate::solve) fn make_ambiguous_response_no_constraints(
&self,
maybe_cause: MaybeCause,
) -> CanonicalResponse<'tcx> {
response_no_constraints_raw(
self.tcx(),
self.max_input_universe,
self.variables,
Certainty::Maybe(maybe_cause),
)
}
/// Computes the region constraints and *new* opaque types registered when
/// proving a goal.
///
/// If an opaque was already constrained before proving this goal, then the
/// external constraints do not need to record that opaque, since if it is
/// further constrained by inference, that will be passed back in the var
/// values.
#[instrument(level = "debug", skip(self), ret)]
fn compute_external_query_constraints(
&self,
) -> Result<ExternalConstraintsData<'tcx>, NoSolution> {
// We only check for leaks from universes which were entered inside
// of the query.
self.infcx.leak_check(self.max_input_universe, None).map_err(|e| {
debug!(?e, "failed the leak check");
NoSolution
})?;
// Cannot use `take_registered_region_obligations` as we may compute the response
// inside of a `probe` whenever we have multiple choices inside of the solver.
let region_obligations = self.infcx.inner.borrow().region_obligations().to_owned();
let mut region_constraints = self.infcx.with_region_constraints(|region_constraints| {
make_query_region_constraints(
self.tcx(),
region_obligations
.iter()
.map(|r_o| (r_o.sup_type, r_o.sub_region, r_o.origin.to_constraint_category())),
region_constraints,
)
});
let mut seen = FxHashSet::default();
region_constraints.outlives.retain(|outlives| seen.insert(*outlives));
let mut opaque_types = self.infcx.clone_opaque_types_for_query_response();
// Only return opaque type keys for newly-defined opaques
opaque_types.retain(|(a, _)| {
self.predefined_opaques_in_body.opaque_types.iter().all(|(pa, _)| pa != a)
});
Ok(ExternalConstraintsData { region_constraints, opaque_types })
}
/// After calling a canonical query, we apply the constraints returned
/// by the query using this function.
///
/// This happens in three steps:
/// - we instantiate the bound variables of the query response
/// - we unify the `var_values` of the response with the `original_values`
/// - we apply the `external_constraints` returned by the query
pub(super) fn instantiate_and_apply_query_response(
&mut self,
param_env: ty::ParamEnv<'tcx>,
original_values: Vec<ty::GenericArg<'tcx>>,
response: CanonicalResponse<'tcx>,
) -> Result<(Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
let substitution = self.compute_query_response_substitution(&original_values, &response);
let Response { var_values, external_constraints, certainty } =
response.substitute(self.tcx(), &substitution);
let nested_goals = self.unify_query_var_values(param_env, &original_values, var_values)?;
let ExternalConstraintsData { region_constraints, opaque_types } =
external_constraints.deref();
self.register_region_constraints(region_constraints);
self.register_opaque_types(param_env, opaque_types)?;
Ok((certainty, nested_goals))
}
/// This returns the substitutions to instantiate the bound variables of
/// the canonical response. This depends on the `original_values` for the
/// bound variables.
fn compute_query_response_substitution(
&self,
original_values: &[ty::GenericArg<'tcx>],
response: &CanonicalResponse<'tcx>,
) -> CanonicalVarValues<'tcx> {
// FIXME: Longterm canonical queries should deal with all placeholders
// created inside of the query directly instead of returning them to the
// caller.
let prev_universe = self.infcx.universe();
let universes_created_in_query = response.max_universe.index();
for _ in 0..universes_created_in_query {
self.infcx.create_next_universe();
}
let var_values = response.value.var_values;
assert_eq!(original_values.len(), var_values.len());
// If the query did not make progress with constraining inference variables,
// we would normally create a new inference variables for bound existential variables
// only then unify this new inference variable with the inference variable from
// the input.
//
// We therefore instantiate the existential variable in the canonical response with the
// inference variable of the input right away, which is more performant.
let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
for (original_value, result_value) in iter::zip(original_values, var_values.var_values) {
match result_value.unpack() {
GenericArgKind::Type(t) => {
if let &ty::Bound(debruijn, b) = t.kind() {
assert_eq!(debruijn, ty::INNERMOST);
opt_values[b.var] = Some(*original_value);
}
}
GenericArgKind::Lifetime(r) => {
if let ty::ReLateBound(debruijn, br) = *r {
assert_eq!(debruijn, ty::INNERMOST);
opt_values[br.var] = Some(*original_value);
}
}
GenericArgKind::Const(c) => {
if let ty::ConstKind::Bound(debruijn, b) = c.kind() {
assert_eq!(debruijn, ty::INNERMOST);
opt_values[b] = Some(*original_value);
}
}
}
}
let var_values = self.tcx().mk_args_from_iter(response.variables.iter().enumerate().map(
|(index, info)| {
if info.universe() != ty::UniverseIndex::ROOT {
// A variable from inside a binder of the query. While ideally these shouldn't
// exist at all (see the FIXME at the start of this method), we have to deal with
// them for now.
self.infcx.instantiate_canonical_var(DUMMY_SP, info, |idx| {
ty::UniverseIndex::from(prev_universe.index() + idx.index())
})
} else if info.is_existential() {
// As an optimization we sometimes avoid creating a new inference variable here.
//
// All new inference variables we create start out in the current universe of the caller.
// This is conceptually wrong as these inference variables would be able to name
// more placeholders then they should be able to. However the inference variables have
// to "come from somewhere", so by equating them with the original values of the caller
// later on, we pull them down into their correct universe again.
if let Some(v) = opt_values[BoundVar::from_usize(index)] {
v
} else {
self.infcx.instantiate_canonical_var(DUMMY_SP, info, |_| prev_universe)
}
} else {
// For placeholders which were already part of the input, we simply map this
// universal bound variable back the placeholder of the input.
original_values[info.expect_placeholder_index()]
}
},
));
CanonicalVarValues { var_values }
}
#[instrument(level = "debug", skip(self, param_env), ret)]
fn unify_query_var_values(
&self,
param_env: ty::ParamEnv<'tcx>,
original_values: &[ty::GenericArg<'tcx>],
var_values: CanonicalVarValues<'tcx>,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
assert_eq!(original_values.len(), var_values.len());
let mut nested_goals = vec![];
for (&orig, response) in iter::zip(original_values, var_values.var_values) {
nested_goals.extend(self.eq_and_get_goals(param_env, orig, response)?);
}
Ok(nested_goals)
}
fn register_region_constraints(&mut self, region_constraints: &QueryRegionConstraints<'tcx>) {
for &(ty::OutlivesPredicate(lhs, rhs), _) in &region_constraints.outlives {
match lhs.unpack() {
GenericArgKind::Lifetime(lhs) => self.register_region_outlives(lhs, rhs),
GenericArgKind::Type(lhs) => self.register_ty_outlives(lhs, rhs),
GenericArgKind::Const(_) => bug!("const outlives: {lhs:?}: {rhs:?}"),
}
}
for member_constraint in &region_constraints.member_constraints {
// FIXME: Deal with member constraints :<
let _ = member_constraint;
}
}
fn register_opaque_types(
&mut self,
param_env: ty::ParamEnv<'tcx>,
opaque_types: &[(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)],
) -> Result<(), NoSolution> {
for &(key, ty) in opaque_types {
self.insert_hidden_type(key, param_env, ty)?;
}
Ok(())
}
}
/// Resolves ty, region, and const vars to their inferred values or their root vars.
struct EagerResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for EagerResolver<'_, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
match *t.kind() {
ty::Infer(ty::TyVar(vid)) => match self.infcx.probe_ty_var(vid) {
Ok(t) => t.fold_with(self),
Err(_) => Ty::new_var(self.infcx.tcx, self.infcx.root_var(vid)),
},
ty::Infer(ty::IntVar(vid)) => self.infcx.opportunistic_resolve_int_var(vid),
ty::Infer(ty::FloatVar(vid)) => self.infcx.opportunistic_resolve_float_var(vid),
_ => {
if t.has_infer() {
t.super_fold_with(self)
} else {
t
}
}
}
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReVar(vid) => self
.infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.infcx.tcx, vid),
_ => r,
}
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
match c.kind() {
ty::ConstKind::Infer(ty::InferConst::Var(vid)) => {
// FIXME: we need to fold the ty too, I think.
match self.infcx.probe_const_var(vid) {
Ok(c) => c.fold_with(self),
Err(_) => {
ty::Const::new_var(self.infcx.tcx, self.infcx.root_const_var(vid), c.ty())
}
}
}
_ => {
if c.has_infer() {
c.super_fold_with(self)
} else {
c
}
}
}
}
}