blob: a9d182abfb7f782c7e522723c03a7fb43e40264b [file] [log] [blame]
use std::cmp::Ordering;
use crate::infer::InferCtxt;
use rustc_middle::infer::canonical::Canonical;
use rustc_middle::infer::canonical::CanonicalTyVarKind;
use rustc_middle::infer::canonical::CanonicalVarInfo;
use rustc_middle::infer::canonical::CanonicalVarInfos;
use rustc_middle::infer::canonical::CanonicalVarKind;
use rustc_middle::ty::BoundRegionKind::BrAnon;
use rustc_middle::ty::BoundTyKind;
use rustc_middle::ty::TyCtxt;
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::{self, Ty};
use rustc_middle::ty::{TypeFoldable, TypeFolder, TypeSuperFoldable};
/// Whether we're canonicalizing a query input or the query response.
///
/// When canonicalizing an input we're in the context of the caller
/// while canonicalizing the response happens in the context of the
/// query.
#[derive(Debug, Clone, Copy)]
pub enum CanonicalizeMode {
Input,
/// FIXME: We currently return region constraints referring to
/// placeholders and inference variables from a binder instantiated
/// inside of the query.
///
/// In the long term we should eagerly deal with these constraints
/// inside of the query and only propagate constraints which are
/// actually nameable by the caller.
Response {
/// The highest universe nameable by the caller.
///
/// All variables in a universe nameable by the caller get mapped
/// to the root universe in the response and then mapped back to
/// their correct universe when applying the query response in the
/// context of the caller.
///
/// This doesn't work for universes created inside of the query so
/// we do remember their universe in the response.
max_input_universe: ty::UniverseIndex,
},
}
pub struct Canonicalizer<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
canonicalize_mode: CanonicalizeMode,
variables: &'a mut Vec<ty::GenericArg<'tcx>>,
primitive_var_infos: Vec<CanonicalVarInfo<'tcx>>,
binder_index: ty::DebruijnIndex,
}
impl<'a, 'tcx> Canonicalizer<'a, 'tcx> {
#[instrument(level = "debug", skip(infcx), ret)]
pub fn canonicalize<T: TypeFoldable<TyCtxt<'tcx>>>(
infcx: &'a InferCtxt<'tcx>,
canonicalize_mode: CanonicalizeMode,
variables: &'a mut Vec<ty::GenericArg<'tcx>>,
value: T,
) -> Canonical<'tcx, T> {
let mut canonicalizer = Canonicalizer {
infcx,
canonicalize_mode,
variables,
primitive_var_infos: Vec::new(),
binder_index: ty::INNERMOST,
};
let value = value.fold_with(&mut canonicalizer);
assert!(!value.has_infer());
assert!(!value.has_placeholders());
let (max_universe, variables) = canonicalizer.finalize();
Canonical { max_universe, variables, value }
}
fn finalize(self) -> (ty::UniverseIndex, CanonicalVarInfos<'tcx>) {
let mut var_infos = self.primitive_var_infos;
// See the rustc-dev-guide section about how we deal with universes
// during canonicalization in the new solver.
match self.canonicalize_mode {
// We try to deduplicate as many query calls as possible and hide
// all information which should not matter for the solver.
//
// For this we compress universes as much as possible.
CanonicalizeMode::Input => {}
// When canonicalizing a response we map a universes already entered
// by the caller to the root universe and only return useful universe
// information for placeholders and inference variables created inside
// of the query.
CanonicalizeMode::Response { max_input_universe } => {
for var in var_infos.iter_mut() {
let uv = var.universe();
let new_uv = ty::UniverseIndex::from(
uv.index().saturating_sub(max_input_universe.index()),
);
*var = var.with_updated_universe(new_uv);
}
let max_universe = var_infos
.iter()
.map(|info| info.universe())
.max()
.unwrap_or(ty::UniverseIndex::ROOT);
let var_infos = self.infcx.tcx.mk_canonical_var_infos(&var_infos);
return (max_universe, var_infos);
}
}
// Given a `var_infos` with existentials `En` and universals `Un` in
// universes `n`, this algorithm compresses them in place so that:
//
// - the new universe indices are as small as possible
// - we only create a new universe if we would otherwise put a placeholder in
// the same compressed universe as an existential which cannot name it
//
// Let's walk through an example:
// - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 0
// - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 1
// - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 1, next_orig_uv: 2
// - var_infos: [E0, U1, E5, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 5
// - var_infos: [E0, U1, E1, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 6
// - var_infos: [E0, U1, E1, U1, E1, E2, U2], curr_compressed_uv: 2, next_orig_uv: -
//
// This algorithm runs in `O(n²)` where `n` is the number of different universe
// indices in the input. This should be fine as `n` is expected to be small.
let mut curr_compressed_uv = ty::UniverseIndex::ROOT;
let mut existential_in_new_uv = false;
let mut next_orig_uv = Some(ty::UniverseIndex::ROOT);
while let Some(orig_uv) = next_orig_uv.take() {
let mut update_uv = |var: &mut CanonicalVarInfo<'tcx>, orig_uv, is_existential| {
let uv = var.universe();
match uv.cmp(&orig_uv) {
Ordering::Less => (), // Already updated
Ordering::Equal => {
if is_existential {
existential_in_new_uv = true;
} else if existential_in_new_uv {
// `var` is a placeholder from a universe which is not nameable
// by an existential which we already put into the compressed
// universe `curr_compressed_uv`. We therefore have to create a
// new universe for `var`.
curr_compressed_uv = curr_compressed_uv.next_universe();
existential_in_new_uv = false;
}
*var = var.with_updated_universe(curr_compressed_uv);
}
Ordering::Greater => {
// We can ignore this variable in this iteration. We only look at
// universes which actually occur in the input for performance.
//
// For this we set `next_orig_uv` to the next smallest, not yet compressed,
// universe of the input.
if next_orig_uv.map_or(true, |curr_next_uv| uv.cannot_name(curr_next_uv)) {
next_orig_uv = Some(uv);
}
}
}
};
// For each universe which occurs in the input, we first iterate over all
// placeholders and then over all inference variables.
//
// Whenever we compress the universe of a placeholder, no existential with
// an already compressed universe can name that placeholder.
for is_existential in [false, true] {
for var in var_infos.iter_mut() {
// We simply put all regions from the input into the highest
// compressed universe, so we only deal with them at the end.
if !var.is_region() {
if is_existential == var.is_existential() {
update_uv(var, orig_uv, is_existential)
}
}
}
}
}
for var in var_infos.iter_mut() {
if var.is_region() {
assert!(var.is_existential());
*var = var.with_updated_universe(curr_compressed_uv);
}
}
let var_infos = self.infcx.tcx.mk_canonical_var_infos(&var_infos);
(curr_compressed_uv, var_infos)
}
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for Canonicalizer<'_, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_binder<T>(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T>
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.binder_index.shift_in(1);
let t = t.super_fold_with(self);
self.binder_index.shift_out(1);
t
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
if let ty::ReVar(vid) = *r {
let resolved_region = self
.infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.infcx.tcx, vid);
assert_eq!(
r, resolved_region,
"region var should have been resolved, {r} -> {resolved_region}"
);
}
let kind = match *r {
ty::ReLateBound(..) => return r,
ty::ReStatic => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
CanonicalizeMode::Response { .. } => return r,
},
ty::ReErased | ty::ReFree(_) | ty::ReEarlyBound(_) => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
CanonicalizeMode::Response { .. } => bug!("unexpected region in response: {r:?}"),
},
ty::RePlaceholder(placeholder) => match self.canonicalize_mode {
// We canonicalize placeholder regions as existentials in query inputs.
CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
CanonicalizeMode::Response { max_input_universe } => {
// If we have a placeholder region inside of a query, it must be from
// a new universe.
if max_input_universe.can_name(placeholder.universe) {
bug!("new placeholder in universe {max_input_universe:?}: {r:?}");
}
CanonicalVarKind::PlaceholderRegion(placeholder)
}
},
ty::ReVar(_) => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
CanonicalizeMode::Response { .. } => {
CanonicalVarKind::Region(self.infcx.universe_of_region(r))
}
},
ty::ReError(_) => return r,
};
let existing_bound_var = match self.canonicalize_mode {
CanonicalizeMode::Input => None,
CanonicalizeMode::Response { .. } => {
self.variables.iter().position(|&v| v == r.into()).map(ty::BoundVar::from)
}
};
let var = existing_bound_var.unwrap_or_else(|| {
let var = ty::BoundVar::from(self.variables.len());
self.variables.push(r.into());
self.primitive_var_infos.push(CanonicalVarInfo { kind });
var
});
let br = ty::BoundRegion { var, kind: BrAnon(None) };
ty::Region::new_late_bound(self.interner(), self.binder_index, br)
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
let kind = match *t.kind() {
ty::Infer(ty::TyVar(vid)) => {
assert_eq!(self.infcx.root_var(vid), vid, "ty vid should have been resolved");
let Err(ui) = self.infcx.probe_ty_var(vid) else {
bug!("ty var should have been resolved: {t}");
};
CanonicalVarKind::Ty(CanonicalTyVarKind::General(ui))
}
ty::Infer(ty::IntVar(vid)) => {
assert_eq!(self.infcx.opportunistic_resolve_int_var(vid), t);
CanonicalVarKind::Ty(CanonicalTyVarKind::Int)
}
ty::Infer(ty::FloatVar(vid)) => {
assert_eq!(self.infcx.opportunistic_resolve_float_var(vid), t);
CanonicalVarKind::Ty(CanonicalTyVarKind::Float)
}
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("fresh var during canonicalization: {t:?}")
}
ty::Placeholder(placeholder) => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::PlaceholderTy(ty::Placeholder {
universe: placeholder.universe,
bound: ty::BoundTy {
var: ty::BoundVar::from_usize(self.variables.len()),
kind: ty::BoundTyKind::Anon,
},
}),
CanonicalizeMode::Response { .. } => CanonicalVarKind::PlaceholderTy(placeholder),
},
ty::Param(_) => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::PlaceholderTy(ty::Placeholder {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundTy {
var: ty::BoundVar::from_usize(self.variables.len()),
kind: ty::BoundTyKind::Anon,
},
}),
CanonicalizeMode::Response { .. } => bug!("param ty in response: {t:?}"),
},
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Dynamic(_, _, _)
| ty::Closure(_, _)
| ty::Generator(_, _, _)
| ty::GeneratorWitness(_)
| ty::GeneratorWitnessMIR(..)
| ty::Never
| ty::Tuple(_)
| ty::Alias(_, _)
| ty::Bound(_, _)
| ty::Error(_) => return t.super_fold_with(self),
};
let var = ty::BoundVar::from(
self.variables.iter().position(|&v| v == t.into()).unwrap_or_else(|| {
let var = self.variables.len();
self.variables.push(t.into());
self.primitive_var_infos.push(CanonicalVarInfo { kind });
var
}),
);
let bt = ty::BoundTy { var, kind: BoundTyKind::Anon };
Ty::new_bound(self.infcx.tcx, self.binder_index, bt)
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
let kind = match c.kind() {
ty::ConstKind::Infer(ty::InferConst::Var(vid)) => {
assert_eq!(
self.infcx.root_const_var(vid),
vid,
"const var should have been resolved"
);
let Err(ui) = self.infcx.probe_const_var(vid) else {
bug!("const var should have been resolved");
};
// FIXME: we should fold this ty eventually
CanonicalVarKind::Const(ui, c.ty())
}
ty::ConstKind::Infer(ty::InferConst::Fresh(_)) => {
bug!("fresh var during canonicalization: {c:?}")
}
ty::ConstKind::Placeholder(placeholder) => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::PlaceholderConst(
ty::Placeholder {
universe: placeholder.universe,
bound: ty::BoundVar::from(self.variables.len()),
},
c.ty(),
),
CanonicalizeMode::Response { .. } => {
CanonicalVarKind::PlaceholderConst(placeholder, c.ty())
}
},
ty::ConstKind::Param(_) => match self.canonicalize_mode {
CanonicalizeMode::Input => CanonicalVarKind::PlaceholderConst(
ty::Placeholder {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundVar::from(self.variables.len()),
},
c.ty(),
),
CanonicalizeMode::Response { .. } => bug!("param ty in response: {c:?}"),
},
ty::ConstKind::Bound(_, _)
| ty::ConstKind::Unevaluated(_)
| ty::ConstKind::Value(_)
| ty::ConstKind::Error(_)
| ty::ConstKind::Expr(_) => return c.super_fold_with(self),
};
let var = ty::BoundVar::from(
self.variables.iter().position(|&v| v == c.into()).unwrap_or_else(|| {
let var = self.variables.len();
self.variables.push(c.into());
self.primitive_var_infos.push(CanonicalVarInfo { kind });
var
}),
);
ty::Const::new_bound(self.infcx.tcx, self.binder_index, var, c.ty())
}
}