blob: 46f5df5ca6f9a5824eb15105e58081514193a9cf [file] [log] [blame]
use crate::{NameBinding, NameBindingKind, Resolver};
use rustc_ast::ast;
use rustc_ast::visit;
use rustc_ast::visit::Visitor;
use rustc_ast::Crate;
use rustc_ast::EnumDef;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::def_id::CRATE_DEF_ID;
use rustc_middle::middle::privacy::Level;
use rustc_middle::middle::privacy::{EffectiveVisibilities, EffectiveVisibility};
use rustc_middle::ty::Visibility;
use std::mem;
#[derive(Clone, Copy)]
enum ParentId<'a> {
Def(LocalDefId),
Import(NameBinding<'a>),
}
impl ParentId<'_> {
fn level(self) -> Level {
match self {
ParentId::Def(_) => Level::Direct,
ParentId::Import(_) => Level::Reexported,
}
}
}
pub(crate) struct EffectiveVisibilitiesVisitor<'r, 'a, 'tcx> {
r: &'r mut Resolver<'a, 'tcx>,
def_effective_visibilities: EffectiveVisibilities,
/// While walking import chains we need to track effective visibilities per-binding, and def id
/// keys in `Resolver::effective_visibilities` are not enough for that, because multiple
/// bindings can correspond to a single def id in imports. So we keep a separate table.
import_effective_visibilities: EffectiveVisibilities<NameBinding<'a>>,
// It's possible to recalculate this at any point, but it's relatively expensive.
current_private_vis: Visibility,
changed: bool,
}
impl Resolver<'_, '_> {
fn nearest_normal_mod(&mut self, def_id: LocalDefId) -> LocalDefId {
self.get_nearest_non_block_module(def_id.to_def_id()).nearest_parent_mod().expect_local()
}
fn private_vis_import(&mut self, binding: NameBinding<'_>) -> Visibility {
let NameBindingKind::Import { import, .. } = binding.kind else { unreachable!() };
Visibility::Restricted(
import
.id()
.map(|id| self.nearest_normal_mod(self.local_def_id(id)))
.unwrap_or(CRATE_DEF_ID),
)
}
fn private_vis_def(&mut self, def_id: LocalDefId) -> Visibility {
// For mod items `nearest_normal_mod` returns its argument, but we actually need its parent.
let normal_mod_id = self.nearest_normal_mod(def_id);
if normal_mod_id == def_id {
Visibility::Restricted(self.tcx.local_parent(def_id))
} else {
Visibility::Restricted(normal_mod_id)
}
}
}
impl<'r, 'a, 'tcx> EffectiveVisibilitiesVisitor<'r, 'a, 'tcx> {
/// Fills the `Resolver::effective_visibilities` table with public & exported items
/// For now, this doesn't resolve macros (FIXME) and cannot resolve Impl, as we
/// need access to a TyCtxt for that. Returns the set of ambiguous re-exports.
pub(crate) fn compute_effective_visibilities<'c>(
r: &'r mut Resolver<'a, 'tcx>,
krate: &'c Crate,
) -> FxHashSet<NameBinding<'a>> {
let mut visitor = EffectiveVisibilitiesVisitor {
r,
def_effective_visibilities: Default::default(),
import_effective_visibilities: Default::default(),
current_private_vis: Visibility::Restricted(CRATE_DEF_ID),
changed: true,
};
visitor.def_effective_visibilities.update_root();
visitor.set_bindings_effective_visibilities(CRATE_DEF_ID);
while visitor.changed {
visitor.changed = false;
visit::walk_crate(&mut visitor, krate);
}
visitor.r.effective_visibilities = visitor.def_effective_visibilities;
let mut exported_ambiguities = FxHashSet::default();
// Update visibilities for import def ids. These are not used during the
// `EffectiveVisibilitiesVisitor` pass, because we have more detailed binding-based
// information, but are used by later passes. Effective visibility of an import def id
// is the maximum value among visibilities of bindings corresponding to that def id.
for (binding, eff_vis) in visitor.import_effective_visibilities.iter() {
let NameBindingKind::Import { import, .. } = binding.kind else { unreachable!() };
if !binding.is_ambiguity() {
if let Some(node_id) = import.id() {
r.effective_visibilities.update_eff_vis(r.local_def_id(node_id), eff_vis, r.tcx)
}
} else if binding.ambiguity.is_some() && eff_vis.is_public_at_level(Level::Reexported) {
exported_ambiguities.insert(*binding);
}
}
info!("resolve::effective_visibilities: {:#?}", r.effective_visibilities);
exported_ambiguities
}
/// Update effective visibilities of bindings in the given module,
/// including their whole reexport chains.
fn set_bindings_effective_visibilities(&mut self, module_id: LocalDefId) {
assert!(self.r.module_map.contains_key(&&module_id.to_def_id()));
let module = self.r.get_module(module_id.to_def_id()).unwrap();
let resolutions = self.r.resolutions(module);
for (_, name_resolution) in resolutions.borrow().iter() {
if let Some(mut binding) = name_resolution.borrow().binding() {
// Set the given effective visibility level to `Level::Direct` and
// sets the rest of the `use` chain to `Level::Reexported` until
// we hit the actual exported item.
//
// If the binding is ambiguous, put the root ambiguity binding and all reexports
// leading to it into the table. They are used by the `ambiguous_glob_reexports`
// lint. For all bindings added to the table this way `is_ambiguity` returns true.
let is_ambiguity =
|binding: NameBinding<'a>, warn: bool| binding.ambiguity.is_some() && !warn;
let mut parent_id = ParentId::Def(module_id);
let mut warn_ambiguity = binding.warn_ambiguity;
while let NameBindingKind::Import { binding: nested_binding, .. } = binding.kind {
self.update_import(binding, parent_id);
if is_ambiguity(binding, warn_ambiguity) {
// Stop at the root ambiguity, further bindings in the chain should not
// be reexported because the root ambiguity blocks any access to them.
// (Those further bindings are most likely not ambiguities themselves.)
break;
}
parent_id = ParentId::Import(binding);
binding = nested_binding;
warn_ambiguity |= nested_binding.warn_ambiguity;
}
if !is_ambiguity(binding, warn_ambiguity)
&& let Some(def_id) = binding.res().opt_def_id().and_then(|id| id.as_local()) {
self.update_def(def_id, binding.vis.expect_local(), parent_id);
}
}
}
}
fn effective_vis_or_private(&mut self, parent_id: ParentId<'a>) -> EffectiveVisibility {
// Private nodes are only added to the table for caching, they could be added or removed at
// any moment without consequences, so we don't set `changed` to true when adding them.
*match parent_id {
ParentId::Def(def_id) => self
.def_effective_visibilities
.effective_vis_or_private(def_id, || self.r.private_vis_def(def_id)),
ParentId::Import(binding) => self
.import_effective_visibilities
.effective_vis_or_private(binding, || self.r.private_vis_import(binding)),
}
}
/// All effective visibilities for a node are larger or equal than private visibility
/// for that node (see `check_invariants` in middle/privacy.rs).
/// So if either parent or nominal visibility is the same as private visibility, then
/// `min(parent_vis, nominal_vis) <= private_vis`, and the update logic is guaranteed
/// to not update anything and we can skip it.
///
/// We are checking this condition only if the correct value of private visibility is
/// cheaply available, otherwise it doesn't make sense performance-wise.
///
/// `None` is returned if the update can be skipped,
/// and cheap private visibility is returned otherwise.
fn may_update(
&self,
nominal_vis: Visibility,
parent_id: ParentId<'_>,
) -> Option<Option<Visibility>> {
match parent_id {
ParentId::Def(def_id) => (nominal_vis != self.current_private_vis
&& self.r.visibilities[&def_id] != self.current_private_vis)
.then_some(Some(self.current_private_vis)),
ParentId::Import(_) => Some(None),
}
}
fn update_import(&mut self, binding: NameBinding<'a>, parent_id: ParentId<'a>) {
let nominal_vis = binding.vis.expect_local();
let Some(cheap_private_vis) = self.may_update(nominal_vis, parent_id) else { return };
let inherited_eff_vis = self.effective_vis_or_private(parent_id);
let tcx = self.r.tcx;
self.changed |= self.import_effective_visibilities.update(
binding,
Some(nominal_vis),
|| cheap_private_vis.unwrap_or_else(|| self.r.private_vis_import(binding)),
inherited_eff_vis,
parent_id.level(),
tcx,
);
}
fn update_def(&mut self, def_id: LocalDefId, nominal_vis: Visibility, parent_id: ParentId<'a>) {
let Some(cheap_private_vis) = self.may_update(nominal_vis, parent_id) else { return };
let inherited_eff_vis = self.effective_vis_or_private(parent_id);
let tcx = self.r.tcx;
self.changed |= self.def_effective_visibilities.update(
def_id,
Some(nominal_vis),
|| cheap_private_vis.unwrap_or_else(|| self.r.private_vis_def(def_id)),
inherited_eff_vis,
parent_id.level(),
tcx,
);
}
fn update_field(&mut self, def_id: LocalDefId, parent_id: LocalDefId) {
self.update_def(def_id, self.r.visibilities[&def_id], ParentId::Def(parent_id));
}
}
impl<'r, 'ast, 'tcx> Visitor<'ast> for EffectiveVisibilitiesVisitor<'ast, 'r, 'tcx> {
fn visit_item(&mut self, item: &'ast ast::Item) {
let def_id = self.r.local_def_id(item.id);
// Update effective visibilities of nested items.
// If it's a mod, also make the visitor walk all of its items
match item.kind {
// Resolved in rustc_privacy when types are available
ast::ItemKind::Impl(..) => return,
// Should be unreachable at this stage
ast::ItemKind::MacCall(..) => panic!(
"ast::ItemKind::MacCall encountered, this should not anymore appear at this stage"
),
ast::ItemKind::Mod(..) => {
let prev_private_vis =
mem::replace(&mut self.current_private_vis, Visibility::Restricted(def_id));
self.set_bindings_effective_visibilities(def_id);
visit::walk_item(self, item);
self.current_private_vis = prev_private_vis;
}
ast::ItemKind::Enum(EnumDef { ref variants }, _) => {
self.set_bindings_effective_visibilities(def_id);
for variant in variants {
let variant_def_id = self.r.local_def_id(variant.id);
for field in variant.data.fields() {
self.update_field(self.r.local_def_id(field.id), variant_def_id);
}
}
}
ast::ItemKind::Struct(ref def, _) | ast::ItemKind::Union(ref def, _) => {
for field in def.fields() {
self.update_field(self.r.local_def_id(field.id), def_id);
}
}
ast::ItemKind::Trait(..) => {
self.set_bindings_effective_visibilities(def_id);
}
ast::ItemKind::ExternCrate(..)
| ast::ItemKind::Use(..)
| ast::ItemKind::Static(..)
| ast::ItemKind::Const(..)
| ast::ItemKind::GlobalAsm(..)
| ast::ItemKind::TyAlias(..)
| ast::ItemKind::TraitAlias(..)
| ast::ItemKind::MacroDef(..)
| ast::ItemKind::ForeignMod(..)
| ast::ItemKind::Fn(..) => return,
}
}
}