blob: 79645310a39871cedc87c80576edb616057ec5e4 [file] [log] [blame]
//! Deduces supplementary parameter attributes from MIR.
//!
//! Deduced parameter attributes are those that can only be soundly determined by examining the
//! body of the function instead of just the signature. These can be useful for optimization
//! purposes on a best-effort basis. We compute them here and store them into the crate metadata so
//! dependent crates can use them.
use rustc_hir::def_id::LocalDefId;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::visit::{NonMutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::{Body, Location, Operand, Place, Terminator, TerminatorKind, RETURN_PLACE};
use rustc_middle::ty::{self, DeducedParamAttrs, Ty, TyCtxt};
use rustc_session::config::OptLevel;
/// A visitor that determines which arguments have been mutated. We can't use the mutability field
/// on LocalDecl for this because it has no meaning post-optimization.
struct DeduceReadOnly {
/// Each bit is indexed by argument number, starting at zero (so 0 corresponds to local decl
/// 1). The bit is true if the argument may have been mutated or false if we know it hasn't
/// been up to the point we're at.
mutable_args: BitSet<usize>,
}
impl DeduceReadOnly {
/// Returns a new DeduceReadOnly instance.
fn new(arg_count: usize) -> Self {
Self { mutable_args: BitSet::new_empty(arg_count) }
}
}
impl<'tcx> Visitor<'tcx> for DeduceReadOnly {
fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, _location: Location) {
// We're only interested in arguments.
if place.local == RETURN_PLACE || place.local.index() > self.mutable_args.domain_size() {
return;
}
let mark_as_mutable = match context {
PlaceContext::MutatingUse(..) => {
// This is a mutation, so mark it as such.
true
}
PlaceContext::NonMutatingUse(NonMutatingUseContext::AddressOf) => {
// Whether mutating though a `&raw const` is allowed is still undecided, so we
// disable any sketchy `readonly` optimizations for now.
// But we only need to do this if the pointer would point into the argument.
!place.is_indirect()
}
PlaceContext::NonMutatingUse(..) | PlaceContext::NonUse(..) => {
// Not mutating, so it's fine.
false
}
};
if mark_as_mutable {
self.mutable_args.insert(place.local.index() - 1);
}
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
// OK, this is subtle. Suppose that we're trying to deduce whether `x` in `f` is read-only
// and we have the following:
//
// fn f(x: BigStruct) { g(x) }
// fn g(mut y: BigStruct) { y.foo = 1 }
//
// If, at the generated MIR level, `f` turned into something like:
//
// fn f(_1: BigStruct) -> () {
// let mut _0: ();
// bb0: {
// _0 = g(move _1) -> bb1;
// }
// ...
// }
//
// then it would be incorrect to mark `x` (i.e. `_1`) as `readonly`, because `g`'s write to
// its copy of the indirect parameter would actually be a write directly to the pointer that
// `f` passes. Note that function arguments are the only situation in which this problem can
// arise: every other use of `move` in MIR doesn't actually write to the value it moves
// from.
//
// Anyway, right now this situation doesn't actually arise in practice. Instead, the MIR for
// that function looks like this:
//
// fn f(_1: BigStruct) -> () {
// let mut _0: ();
// let mut _2: BigStruct;
// bb0: {
// _2 = move _1;
// _0 = g(move _2) -> bb1;
// }
// ...
// }
//
// Because of that extra move that MIR construction inserts, `x` (i.e. `_1`) can *in
// practice* safely be marked `readonly`.
//
// To handle the possibility that other optimizations (for example, destination propagation)
// might someday generate MIR like the first example above, we panic upon seeing an argument
// to *our* function that is directly moved into *another* function as an argument. Having
// eliminated that problematic case, we can safely treat moves as copies in this analysis.
//
// In the future, if MIR optimizations cause arguments of a caller to be directly moved into
// the argument of a callee, we can just add that argument to `mutated_args` instead of
// panicking.
//
// Note that, because the problematic MIR is never actually generated, we can't add a test
// case for this.
if let TerminatorKind::Call { ref args, .. } = terminator.kind {
for arg in args {
if let Operand::Move(place) = *arg {
let local = place.local;
if place.is_indirect()
|| local == RETURN_PLACE
|| local.index() > self.mutable_args.domain_size()
{
continue;
}
self.mutable_args.insert(local.index() - 1);
}
}
};
self.super_terminator(terminator, location);
}
}
/// Returns true if values of a given type will never be passed indirectly, regardless of ABI.
fn type_will_always_be_passed_directly(ty: Ty<'_>) -> bool {
matches!(
ty.kind(),
ty::Bool
| ty::Char
| ty::Float(..)
| ty::Int(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::Slice(..)
| ty::Uint(..)
)
}
/// Returns the deduced parameter attributes for a function.
///
/// Deduced parameter attributes are those that can only be soundly determined by examining the
/// body of the function instead of just the signature. These can be useful for optimization
/// purposes on a best-effort basis. We compute them here and store them into the crate metadata so
/// dependent crates can use them.
pub fn deduced_param_attrs<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> &'tcx [DeducedParamAttrs] {
// This computation is unfortunately rather expensive, so don't do it unless we're optimizing.
// Also skip it in incremental mode.
if tcx.sess.opts.optimize == OptLevel::No || tcx.sess.opts.incremental.is_some() {
return &[];
}
// If the Freeze language item isn't present, then don't bother.
if tcx.lang_items().freeze_trait().is_none() {
return &[];
}
// Codegen won't use this information for anything if all the function parameters are passed
// directly. Detect that and bail, for compilation speed.
let fn_ty = tcx.type_of(def_id).instantiate_identity();
if matches!(fn_ty.kind(), ty::FnDef(..)) {
if fn_ty
.fn_sig(tcx)
.inputs()
.skip_binder()
.iter()
.cloned()
.all(type_will_always_be_passed_directly)
{
return &[];
}
}
// Don't deduce any attributes for functions that have no MIR.
if !tcx.is_mir_available(def_id) {
return &[];
}
// Grab the optimized MIR. Analyze it to determine which arguments have been mutated.
let body: &Body<'tcx> = tcx.optimized_mir(def_id);
let mut deduce_read_only = DeduceReadOnly::new(body.arg_count);
deduce_read_only.visit_body(body);
// Set the `readonly` attribute for every argument that we concluded is immutable and that
// contains no UnsafeCells.
//
// FIXME: This is overly conservative around generic parameters: `is_freeze()` will always
// return false for them. For a description of alternatives that could do a better job here,
// see [1].
//
// [1]: https://github.com/rust-lang/rust/pull/103172#discussion_r999139997
let param_env = tcx.param_env_reveal_all_normalized(def_id);
let mut deduced_param_attrs = tcx.arena.alloc_from_iter(
body.local_decls.iter().skip(1).take(body.arg_count).enumerate().map(
|(arg_index, local_decl)| DeducedParamAttrs {
read_only: !deduce_read_only.mutable_args.contains(arg_index)
// We must normalize here to reveal opaques and normalize
// their substs, otherwise we'll see exponential blow-up in
// compile times: #113372
&& tcx
.normalize_erasing_regions(param_env, local_decl.ty)
.is_freeze(tcx, param_env),
},
),
);
// Trailing parameters past the size of the `deduced_param_attrs` array are assumed to have the
// default set of attributes, so we don't have to store them explicitly. Pop them off to save a
// few bytes in metadata.
while deduced_param_attrs.last() == Some(&DeducedParamAttrs::default()) {
let last_index = deduced_param_attrs.len() - 1;
deduced_param_attrs = &mut deduced_param_attrs[0..last_index];
}
deduced_param_attrs
}