blob: cf674d5dda65da339b6e597a3f9d484da29a61c3 [file] [log] [blame]
use rustc_data_structures::sso::SsoHashMap;
use rustc_hir::def_id::DefId;
use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
use rustc_middle::ty::{self, InferConst, Term, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::Span;
use crate::infer::nll_relate::TypeRelatingDelegate;
use crate::infer::type_variable::TypeVariableValue;
use crate::infer::{InferCtxt, RegionVariableOrigin};
/// Attempts to generalize `term` for the type variable `for_vid`.
/// This checks for cycles -- that is, whether the type `term`
/// references `for_vid`.
pub(super) fn generalize<'tcx, D: GeneralizerDelegate<'tcx>, T: Into<Term<'tcx>> + Relate<'tcx>>(
infcx: &InferCtxt<'tcx>,
delegate: &mut D,
term: T,
for_vid: impl Into<ty::TermVid<'tcx>>,
ambient_variance: ty::Variance,
) -> RelateResult<'tcx, Generalization<T>> {
let (for_universe, root_vid) = match for_vid.into() {
ty::TermVid::Ty(ty_vid) => (
infcx.probe_ty_var(ty_vid).unwrap_err(),
ty::TermVid::Ty(infcx.inner.borrow_mut().type_variables().sub_root_var(ty_vid)),
),
ty::TermVid::Const(ct_vid) => (
infcx.probe_const_var(ct_vid).unwrap_err(),
ty::TermVid::Const(infcx.inner.borrow_mut().const_unification_table().find(ct_vid)),
),
};
let mut generalizer = Generalizer {
infcx,
delegate,
ambient_variance,
root_vid,
for_universe,
root_term: term.into(),
needs_wf: false,
cache: Default::default(),
};
assert!(!term.has_escaping_bound_vars());
let value = generalizer.relate(term, term)?;
let needs_wf = generalizer.needs_wf;
Ok(Generalization { value, needs_wf })
}
/// Abstracts the handling of region vars between HIR and MIR/NLL typechecking
/// in the generalizer code.
pub trait GeneralizerDelegate<'tcx> {
fn param_env(&self) -> ty::ParamEnv<'tcx>;
fn forbid_inference_vars() -> bool;
fn generalize_region(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx>;
}
pub struct CombineDelegate<'cx, 'tcx> {
pub infcx: &'cx InferCtxt<'tcx>,
pub param_env: ty::ParamEnv<'tcx>,
pub span: Span,
}
impl<'tcx> GeneralizerDelegate<'tcx> for CombineDelegate<'_, 'tcx> {
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn forbid_inference_vars() -> bool {
false
}
fn generalize_region(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx> {
// FIXME: This is non-ideal because we don't give a
// very descriptive origin for this region variable.
self.infcx
.next_region_var_in_universe(RegionVariableOrigin::MiscVariable(self.span), universe)
}
}
impl<'tcx, T> GeneralizerDelegate<'tcx> for T
where
T: TypeRelatingDelegate<'tcx>,
{
fn param_env(&self) -> ty::ParamEnv<'tcx> {
<Self as TypeRelatingDelegate<'tcx>>::param_env(self)
}
fn forbid_inference_vars() -> bool {
<Self as TypeRelatingDelegate<'tcx>>::forbid_inference_vars()
}
fn generalize_region(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx> {
<Self as TypeRelatingDelegate<'tcx>>::generalize_existential(self, universe)
}
}
/// The "generalizer" is used when handling inference variables.
///
/// The basic strategy for handling a constraint like `?A <: B` is to
/// apply a "generalization strategy" to the term `B` -- this replaces
/// all the lifetimes in the term `B` with fresh inference variables.
/// (You can read more about the strategy in this [blog post].)
///
/// As an example, if we had `?A <: &'x u32`, we would generalize `&'x
/// u32` to `&'0 u32` where `'0` is a fresh variable. This becomes the
/// value of `A`. Finally, we relate `&'0 u32 <: &'x u32`, which
/// establishes `'0: 'x` as a constraint.
///
/// [blog post]: https://is.gd/0hKvIr
struct Generalizer<'me, 'tcx, D> {
infcx: &'me InferCtxt<'tcx>,
/// This is used to abstract the behaviors of the three previous
/// generalizer-like implementations (`Generalizer`, `TypeGeneralizer`,
/// and `ConstInferUnifier`). See [`GeneralizerDelegate`] for more
/// information.
delegate: &'me mut D,
/// After we generalize this type, we are going to relate it to
/// some other type. What will be the variance at this point?
ambient_variance: ty::Variance,
/// The vid of the type variable that is in the process of being
/// instantiated. If we find this within the value we are folding,
/// that means we would have created a cyclic value.
root_vid: ty::TermVid<'tcx>,
/// The universe of the type variable that is in the process of being
/// instantiated. If we find anything that this universe cannot name,
/// we reject the relation.
for_universe: ty::UniverseIndex,
/// The root term (const or type) we're generalizing. Used for cycle errors.
root_term: Term<'tcx>,
cache: SsoHashMap<Ty<'tcx>, Ty<'tcx>>,
/// See the field `needs_wf` in `Generalization`.
needs_wf: bool,
}
impl<'tcx, D> Generalizer<'_, 'tcx, D> {
/// Create an error that corresponds to the term kind in `root_term`
fn cyclic_term_error(&self) -> TypeError<'tcx> {
match self.root_term.unpack() {
ty::TermKind::Ty(ty) => TypeError::CyclicTy(ty),
ty::TermKind::Const(ct) => TypeError::CyclicConst(ct),
}
}
}
impl<'tcx, D> TypeRelation<'tcx> for Generalizer<'_, 'tcx, D>
where
D: GeneralizerDelegate<'tcx>,
{
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.delegate.param_env()
}
fn tag(&self) -> &'static str {
"Generalizer"
}
fn a_is_expected(&self) -> bool {
true
}
fn relate_item_args(
&mut self,
item_def_id: DefId,
a_subst: ty::GenericArgsRef<'tcx>,
b_subst: ty::GenericArgsRef<'tcx>,
) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
if self.ambient_variance == ty::Variance::Invariant {
// Avoid fetching the variance if we are in an invariant
// context; no need, and it can induce dependency cycles
// (e.g., #41849).
relate::relate_args(self, a_subst, b_subst)
} else {
let tcx = self.tcx();
let opt_variances = tcx.variances_of(item_def_id);
relate::relate_args_with_variances(
self,
item_def_id,
opt_variances,
a_subst,
b_subst,
true,
)
}
}
#[instrument(level = "debug", skip(self, variance, b), ret)]
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
variance: ty::Variance,
_info: ty::VarianceDiagInfo<'tcx>,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
let old_ambient_variance = self.ambient_variance;
self.ambient_variance = self.ambient_variance.xform(variance);
debug!(?self.ambient_variance, "new ambient variance");
let r = self.relate(a, b)?;
self.ambient_variance = old_ambient_variance;
Ok(r)
}
#[instrument(level = "debug", skip(self, t2), ret)]
fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
assert_eq!(t, t2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
if let Some(&result) = self.cache.get(&t) {
return Ok(result);
}
// Check to see whether the type we are generalizing references
// any other type variable related to `vid` via
// subtyping. This is basically our "occurs check", preventing
// us from creating infinitely sized types.
let g = match *t.kind() {
ty::Infer(ty::TyVar(_)) | ty::Infer(ty::IntVar(_)) | ty::Infer(ty::FloatVar(_))
if D::forbid_inference_vars() =>
{
bug!("unexpected inference variable encountered in NLL generalization: {t}");
}
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected infer type: {t}")
}
ty::Infer(ty::TyVar(vid)) => {
let mut inner = self.infcx.inner.borrow_mut();
let vid = inner.type_variables().root_var(vid);
let sub_vid = inner.type_variables().sub_root_var(vid);
if ty::TermVid::Ty(sub_vid) == self.root_vid {
// If sub-roots are equal, then `root_vid` and
// `vid` are related via subtyping.
Err(self.cyclic_term_error())
} else {
let probe = inner.type_variables().probe(vid);
match probe {
TypeVariableValue::Known { value: u } => {
drop(inner);
self.relate(u, u)
}
TypeVariableValue::Unknown { universe } => {
match self.ambient_variance {
// Invariant: no need to make a fresh type variable
// if we can name the universe.
ty::Invariant => {
if self.for_universe.can_name(universe) {
return Ok(t);
}
}
// Bivariant: make a fresh var, but we
// may need a WF predicate. See
// comment on `needs_wf` field for
// more info.
ty::Bivariant => self.needs_wf = true,
// Co/contravariant: this will be
// sufficiently constrained later on.
ty::Covariant | ty::Contravariant => (),
}
let origin = *inner.type_variables().var_origin(vid);
let new_var_id =
inner.type_variables().new_var(self.for_universe, origin);
let u = Ty::new_var(self.tcx(), new_var_id);
// Record that we replaced `vid` with `new_var_id` as part of a generalization
// operation. This is needed to detect cyclic types. To see why, see the
// docs in the `type_variables` module.
inner.type_variables().sub(vid, new_var_id);
debug!("replacing original vid={:?} with new={:?}", vid, u);
Ok(u)
}
}
}
}
ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
// No matter what mode we are in,
// integer/floating-point types must be equal to be
// relatable.
Ok(t)
}
ty::Placeholder(placeholder) => {
if self.for_universe.can_name(placeholder.universe) {
Ok(t)
} else {
debug!(
"root universe {:?} cannot name placeholder in universe {:?}",
self.for_universe, placeholder.universe
);
Err(TypeError::Mismatch)
}
}
_ => relate::structurally_relate_tys(self, t, t),
}?;
self.cache.insert(t, g);
Ok(g)
}
#[instrument(level = "debug", skip(self, r2), ret)]
fn regions(
&mut self,
r: ty::Region<'tcx>,
r2: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
assert_eq!(r, r2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
match *r {
// Never make variables for regions bound within the type itself,
// nor for erased regions.
ty::ReLateBound(..) | ty::ReErased => {
return Ok(r);
}
// It doesn't really matter for correctness if we generalize ReError,
// since we're already on a doomed compilation path.
ty::ReError(_) => {
return Ok(r);
}
ty::RePlaceholder(..)
| ty::ReVar(..)
| ty::ReStatic
| ty::ReEarlyBound(..)
| ty::ReFree(..) => {
// see common code below
}
}
// If we are in an invariant context, we can re-use the region
// as is, unless it happens to be in some universe that we
// can't name.
if let ty::Invariant = self.ambient_variance {
let r_universe = self.infcx.universe_of_region(r);
if self.for_universe.can_name(r_universe) {
return Ok(r);
}
}
Ok(self.delegate.generalize_region(self.for_universe))
}
#[instrument(level = "debug", skip(self, c2), ret)]
fn consts(
&mut self,
c: ty::Const<'tcx>,
c2: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
assert_eq!(c, c2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
match c.kind() {
ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
bug!("unexpected inference variable encountered in NLL generalization: {:?}", c);
}
ty::ConstKind::Infer(InferConst::Var(vid)) => {
// If root const vids are equal, then `root_vid` and
// `vid` are related and we'd be inferring an infinitely
// deep const.
if ty::TermVid::Const(
self.infcx.inner.borrow_mut().const_unification_table().find(vid),
) == self.root_vid
{
return Err(self.cyclic_term_error());
}
let mut inner = self.infcx.inner.borrow_mut();
let variable_table = &mut inner.const_unification_table();
let var_value = variable_table.probe_value(vid);
match var_value.val {
ConstVariableValue::Known { value: u } => {
drop(inner);
self.relate(u, u)
}
ConstVariableValue::Unknown { universe } => {
if self.for_universe.can_name(universe) {
Ok(c)
} else {
let new_var_id = variable_table.new_key(ConstVarValue {
origin: var_value.origin,
val: ConstVariableValue::Unknown { universe: self.for_universe },
});
Ok(ty::Const::new_var(self.tcx(), new_var_id, c.ty()))
}
}
}
}
// FIXME: remove this branch once `structurally_relate_consts` is fully
// structural.
ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
let args = self.relate_with_variance(
ty::Variance::Invariant,
ty::VarianceDiagInfo::default(),
args,
args,
)?;
Ok(ty::Const::new_unevaluated(
self.tcx(),
ty::UnevaluatedConst { def, args },
c.ty(),
))
}
ty::ConstKind::Placeholder(placeholder) => {
if self.for_universe.can_name(placeholder.universe) {
Ok(c)
} else {
debug!(
"root universe {:?} cannot name placeholder in universe {:?}",
self.for_universe, placeholder.universe
);
Err(TypeError::Mismatch)
}
}
_ => relate::structurally_relate_consts(self, c, c),
}
}
#[instrument(level = "debug", skip(self), ret)]
fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
_: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<'tcx>,
{
let result = self.relate(a.skip_binder(), a.skip_binder())?;
Ok(a.rebind(result))
}
}
/// Result from a generalization operation. This includes
/// not only the generalized type, but also a bool flag
/// indicating whether further WF checks are needed.
#[derive(Debug)]
pub struct Generalization<T> {
pub value: T,
/// If true, then the generalized type may not be well-formed,
/// even if the source type is well-formed, so we should add an
/// additional check to enforce that it is. This arises in
/// particular around 'bivariant' type parameters that are only
/// constrained by a where-clause. As an example, imagine a type:
///
/// struct Foo<A, B> where A: Iterator<Item = B> {
/// data: A
/// }
///
/// here, `A` will be covariant, but `B` is
/// unconstrained. However, whatever it is, for `Foo` to be WF, it
/// must be equal to `A::Item`. If we have an input `Foo<?A, ?B>`,
/// then after generalization we will wind up with a type like
/// `Foo<?C, ?D>`. When we enforce that `Foo<?A, ?B> <: Foo<?C,
/// ?D>` (or `>:`), we will wind up with the requirement that `?A
/// <: ?C`, but no particular relationship between `?B` and `?D`
/// (after all, we do not know the variance of the normalized form
/// of `A::Item` with respect to `A`). If we do nothing else, this
/// may mean that `?D` goes unconstrained (as in #41677). So, in
/// this scenario where we create a new type variable in a
/// bivariant context, we set the `needs_wf` flag to true. This
/// will force the calling code to check that `WF(Foo<?C, ?D>)`
/// holds, which in turn implies that `?C::Item == ?D`. So once
/// `?C` is constrained, that should suffice to restrict `?D`.
pub needs_wf: bool,
}