blob: 07c61df21403b8293fea46db9c95afde80656f86 [file] [log] [blame]
use super::operand::{OperandRef, OperandValue};
use super::place::PlaceRef;
use super::{FunctionCx, LocalRef};
use crate::base;
use crate::common::{self, IntPredicate};
use crate::traits::*;
use crate::MemFlags;
use rustc_middle::mir;
use rustc_middle::mir::Operand;
use rustc_middle::ty::cast::{CastTy, IntTy};
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, adjustment::PointerCoercion, Instance, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::source_map::{Span, DUMMY_SP};
use rustc_target::abi::{self, FIRST_VARIANT};
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
#[instrument(level = "trace", skip(self, bx))]
pub fn codegen_rvalue(
&mut self,
bx: &mut Bx,
dest: PlaceRef<'tcx, Bx::Value>,
rvalue: &mir::Rvalue<'tcx>,
) {
match *rvalue {
mir::Rvalue::Use(ref operand) => {
let cg_operand = self.codegen_operand(bx, operand);
// FIXME: consider not copying constants through stack. (Fixable by codegen'ing
// constants into `OperandValue::Ref`; why don’t we do that yet if we don’t?)
cg_operand.val.store(bx, dest);
}
mir::Rvalue::Cast(
mir::CastKind::PointerCoercion(PointerCoercion::Unsize),
ref source,
_,
) => {
// The destination necessarily contains a fat pointer, so if
// it's a scalar pair, it's a fat pointer or newtype thereof.
if bx.cx().is_backend_scalar_pair(dest.layout) {
// Into-coerce of a thin pointer to a fat pointer -- just
// use the operand path.
let temp = self.codegen_rvalue_operand(bx, rvalue);
temp.val.store(bx, dest);
return;
}
// Unsize of a nontrivial struct. I would prefer for
// this to be eliminated by MIR building, but
// `CoerceUnsized` can be passed by a where-clause,
// so the (generic) MIR may not be able to expand it.
let operand = self.codegen_operand(bx, source);
match operand.val {
OperandValue::Pair(..) | OperandValue::Immediate(_) => {
// Unsize from an immediate structure. We don't
// really need a temporary alloca here, but
// avoiding it would require us to have
// `coerce_unsized_into` use `extractvalue` to
// index into the struct, and this case isn't
// important enough for it.
debug!("codegen_rvalue: creating ugly alloca");
let scratch = PlaceRef::alloca(bx, operand.layout);
scratch.storage_live(bx);
operand.val.store(bx, scratch);
base::coerce_unsized_into(bx, scratch, dest);
scratch.storage_dead(bx);
}
OperandValue::Ref(llref, None, align) => {
let source = PlaceRef::new_sized_aligned(llref, operand.layout, align);
base::coerce_unsized_into(bx, source, dest);
}
OperandValue::Ref(_, Some(_), _) => {
bug!("unsized coercion on an unsized rvalue");
}
OperandValue::ZeroSized => {
bug!("unsized coercion on a ZST rvalue");
}
}
}
mir::Rvalue::Cast(mir::CastKind::Transmute, ref operand, _ty) => {
let src = self.codegen_operand(bx, operand);
self.codegen_transmute(bx, src, dest);
}
mir::Rvalue::Repeat(ref elem, count) => {
let cg_elem = self.codegen_operand(bx, elem);
// Do not generate the loop for zero-sized elements or empty arrays.
if dest.layout.is_zst() {
return;
}
if let OperandValue::Immediate(v) = cg_elem.val {
let zero = bx.const_usize(0);
let start = dest.project_index(bx, zero).llval;
let size = bx.const_usize(dest.layout.size.bytes());
// Use llvm.memset.p0i8.* to initialize all zero arrays
if bx.cx().const_to_opt_u128(v, false) == Some(0) {
let fill = bx.cx().const_u8(0);
bx.memset(start, fill, size, dest.align, MemFlags::empty());
return;
}
// Use llvm.memset.p0i8.* to initialize byte arrays
let v = bx.from_immediate(v);
if bx.cx().val_ty(v) == bx.cx().type_i8() {
bx.memset(start, v, size, dest.align, MemFlags::empty());
return;
}
}
let count = self
.monomorphize(count)
.eval_target_usize(bx.cx().tcx(), ty::ParamEnv::reveal_all());
bx.write_operand_repeatedly(cg_elem, count, dest);
}
mir::Rvalue::Aggregate(ref kind, ref operands) => {
let (variant_index, variant_dest, active_field_index) = match **kind {
mir::AggregateKind::Adt(_, variant_index, _, _, active_field_index) => {
let variant_dest = dest.project_downcast(bx, variant_index);
(variant_index, variant_dest, active_field_index)
}
_ => (FIRST_VARIANT, dest, None),
};
if active_field_index.is_some() {
assert_eq!(operands.len(), 1);
}
for (i, operand) in operands.iter_enumerated() {
let op = self.codegen_operand(bx, operand);
// Do not generate stores and GEPis for zero-sized fields.
if !op.layout.is_zst() {
let field_index = active_field_index.unwrap_or(i);
let field = if let mir::AggregateKind::Array(_) = **kind {
let llindex = bx.cx().const_usize(field_index.as_u32().into());
variant_dest.project_index(bx, llindex)
} else {
variant_dest.project_field(bx, field_index.as_usize())
};
op.val.store(bx, field);
}
}
dest.codegen_set_discr(bx, variant_index);
}
_ => {
assert!(self.rvalue_creates_operand(rvalue, DUMMY_SP));
let temp = self.codegen_rvalue_operand(bx, rvalue);
temp.val.store(bx, dest);
}
}
}
fn codegen_transmute(
&mut self,
bx: &mut Bx,
src: OperandRef<'tcx, Bx::Value>,
dst: PlaceRef<'tcx, Bx::Value>,
) {
// The MIR validator enforces no unsized transmutes.
debug_assert!(src.layout.is_sized());
debug_assert!(dst.layout.is_sized());
if let Some(val) = self.codegen_transmute_operand(bx, src, dst.layout) {
val.store(bx, dst);
return;
}
match src.val {
OperandValue::Ref(..) | OperandValue::ZeroSized => {
span_bug!(
self.mir.span,
"Operand path should have handled transmute \
from {src:?} to place {dst:?}"
);
}
OperandValue::Immediate(..) | OperandValue::Pair(..) => {
// When we have immediate(s), the alignment of the source is irrelevant,
// so we can store them using the destination's alignment.
src.val.store(bx, PlaceRef::new_sized_aligned(dst.llval, src.layout, dst.align));
}
}
}
/// Attempts to transmute an `OperandValue` to another `OperandValue`.
///
/// Returns `None` for cases that can't work in that framework, such as for
/// `Immediate`->`Ref` that needs an `alloc` to get the location.
fn codegen_transmute_operand(
&mut self,
bx: &mut Bx,
operand: OperandRef<'tcx, Bx::Value>,
cast: TyAndLayout<'tcx>,
) -> Option<OperandValue<Bx::Value>> {
// Check for transmutes that are always UB.
if operand.layout.size != cast.size
|| operand.layout.abi.is_uninhabited()
|| cast.abi.is_uninhabited()
{
if !operand.layout.abi.is_uninhabited() {
// Since this is known statically and the input could have existed
// without already having hit UB, might as well trap for it.
bx.abort();
}
// Because this transmute is UB, return something easy to generate,
// since it's fine that later uses of the value are probably UB.
return Some(OperandValue::poison(bx, cast));
}
let operand_kind = self.value_kind(operand.layout);
let cast_kind = self.value_kind(cast);
match operand.val {
OperandValue::Ref(ptr, meta, align) => {
debug_assert_eq!(meta, None);
debug_assert!(matches!(operand_kind, OperandValueKind::Ref));
let fake_place = PlaceRef::new_sized_aligned(ptr, cast, align);
Some(bx.load_operand(fake_place).val)
}
OperandValue::ZeroSized => {
let OperandValueKind::ZeroSized = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
};
if let OperandValueKind::ZeroSized = cast_kind {
Some(OperandValue::ZeroSized)
} else {
None
}
}
OperandValue::Immediate(imm) => {
let OperandValueKind::Immediate(in_scalar) = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
};
if let OperandValueKind::Immediate(out_scalar) = cast_kind
&& in_scalar.size(self.cx) == out_scalar.size(self.cx)
{
let operand_bty = bx.backend_type(operand.layout);
let cast_bty = bx.backend_type(cast);
Some(OperandValue::Immediate(self.transmute_immediate(
bx,
imm,
in_scalar,
operand_bty,
out_scalar,
cast_bty,
)))
} else {
None
}
}
OperandValue::Pair(imm_a, imm_b) => {
let OperandValueKind::Pair(in_a, in_b) = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
};
if let OperandValueKind::Pair(out_a, out_b) = cast_kind
&& in_a.size(self.cx) == out_a.size(self.cx)
&& in_b.size(self.cx) == out_b.size(self.cx)
{
let in_a_ibty = bx.scalar_pair_element_backend_type(operand.layout, 0, false);
let in_b_ibty = bx.scalar_pair_element_backend_type(operand.layout, 1, false);
let out_a_ibty = bx.scalar_pair_element_backend_type(cast, 0, false);
let out_b_ibty = bx.scalar_pair_element_backend_type(cast, 1, false);
Some(OperandValue::Pair(
self.transmute_immediate(bx, imm_a, in_a, in_a_ibty, out_a, out_a_ibty),
self.transmute_immediate(bx, imm_b, in_b, in_b_ibty, out_b, out_b_ibty),
))
} else {
None
}
}
}
}
/// Transmutes one of the immediates from an [`OperandValue::Immediate`]
/// or an [`OperandValue::Pair`] to an immediate of the target type.
///
/// `to_backend_ty` must be the *non*-immediate backend type (so it will be
/// `i8`, not `i1`, for `bool`-like types.)
fn transmute_immediate(
&self,
bx: &mut Bx,
mut imm: Bx::Value,
from_scalar: abi::Scalar,
from_backend_ty: Bx::Type,
to_scalar: abi::Scalar,
to_backend_ty: Bx::Type,
) -> Bx::Value {
debug_assert_eq!(from_scalar.size(self.cx), to_scalar.size(self.cx));
use abi::Primitive::*;
imm = bx.from_immediate(imm);
// When scalars are passed by value, there's no metadata recording their
// valid ranges. For example, `char`s are passed as just `i32`, with no
// way for LLVM to know that they're 0x10FFFF at most. Thus we assume
// the range of the input value too, not just the output range.
self.assume_scalar_range(bx, imm, from_scalar, from_backend_ty);
imm = match (from_scalar.primitive(), to_scalar.primitive()) {
(Int(..) | F32 | F64, Int(..) | F32 | F64) => bx.bitcast(imm, to_backend_ty),
(Pointer(..), Pointer(..)) => bx.pointercast(imm, to_backend_ty),
(Int(..), Pointer(..)) => bx.inttoptr(imm, to_backend_ty),
(Pointer(..), Int(..)) => bx.ptrtoint(imm, to_backend_ty),
(F32 | F64, Pointer(..)) => {
let int_imm = bx.bitcast(imm, bx.cx().type_isize());
bx.inttoptr(int_imm, to_backend_ty)
}
(Pointer(..), F32 | F64) => {
let int_imm = bx.ptrtoint(imm, bx.cx().type_isize());
bx.bitcast(int_imm, to_backend_ty)
}
};
self.assume_scalar_range(bx, imm, to_scalar, to_backend_ty);
imm = bx.to_immediate_scalar(imm, to_scalar);
imm
}
fn assume_scalar_range(
&self,
bx: &mut Bx,
imm: Bx::Value,
scalar: abi::Scalar,
backend_ty: Bx::Type,
) {
if matches!(self.cx.sess().opts.optimize, OptLevel::No | OptLevel::Less)
// For now, the critical niches are all over `Int`eger values.
// Should floating-point values or pointers ever get more complex
// niches, then this code will probably want to handle them too.
|| !matches!(scalar.primitive(), abi::Primitive::Int(..))
|| scalar.is_always_valid(self.cx)
{
return;
}
let abi::WrappingRange { start, end } = scalar.valid_range(self.cx);
if start <= end {
if start > 0 {
let low = bx.const_uint_big(backend_ty, start);
let cmp = bx.icmp(IntPredicate::IntUGE, imm, low);
bx.assume(cmp);
}
let type_max = scalar.size(self.cx).unsigned_int_max();
if end < type_max {
let high = bx.const_uint_big(backend_ty, end);
let cmp = bx.icmp(IntPredicate::IntULE, imm, high);
bx.assume(cmp);
}
} else {
let low = bx.const_uint_big(backend_ty, start);
let cmp_low = bx.icmp(IntPredicate::IntUGE, imm, low);
let high = bx.const_uint_big(backend_ty, end);
let cmp_high = bx.icmp(IntPredicate::IntULE, imm, high);
let or = bx.or(cmp_low, cmp_high);
bx.assume(or);
}
}
pub fn codegen_rvalue_unsized(
&mut self,
bx: &mut Bx,
indirect_dest: PlaceRef<'tcx, Bx::Value>,
rvalue: &mir::Rvalue<'tcx>,
) {
debug!(
"codegen_rvalue_unsized(indirect_dest.llval={:?}, rvalue={:?})",
indirect_dest.llval, rvalue
);
match *rvalue {
mir::Rvalue::Use(ref operand) => {
let cg_operand = self.codegen_operand(bx, operand);
cg_operand.val.store_unsized(bx, indirect_dest);
}
_ => bug!("unsized assignment other than `Rvalue::Use`"),
}
}
pub fn codegen_rvalue_operand(
&mut self,
bx: &mut Bx,
rvalue: &mir::Rvalue<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
assert!(
self.rvalue_creates_operand(rvalue, DUMMY_SP),
"cannot codegen {rvalue:?} to operand",
);
match *rvalue {
mir::Rvalue::Cast(ref kind, ref source, mir_cast_ty) => {
let operand = self.codegen_operand(bx, source);
debug!("cast operand is {:?}", operand);
let cast = bx.cx().layout_of(self.monomorphize(mir_cast_ty));
let val = match *kind {
mir::CastKind::PointerExposeAddress => {
assert!(bx.cx().is_backend_immediate(cast));
let llptr = operand.immediate();
let llcast_ty = bx.cx().immediate_backend_type(cast);
let lladdr = bx.ptrtoint(llptr, llcast_ty);
OperandValue::Immediate(lladdr)
}
mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer) => {
match *operand.layout.ty.kind() {
ty::FnDef(def_id, args) => {
let instance = ty::Instance::resolve_for_fn_ptr(
bx.tcx(),
ty::ParamEnv::reveal_all(),
def_id,
args,
)
.unwrap()
.polymorphize(bx.cx().tcx());
OperandValue::Immediate(bx.get_fn_addr(instance))
}
_ => bug!("{} cannot be reified to a fn ptr", operand.layout.ty),
}
}
mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_)) => {
match *operand.layout.ty.kind() {
ty::Closure(def_id, args) => {
let instance = Instance::resolve_closure(
bx.cx().tcx(),
def_id,
args,
ty::ClosureKind::FnOnce,
)
.expect("failed to normalize and resolve closure during codegen")
.polymorphize(bx.cx().tcx());
OperandValue::Immediate(bx.cx().get_fn_addr(instance))
}
_ => bug!("{} cannot be cast to a fn ptr", operand.layout.ty),
}
}
mir::CastKind::PointerCoercion(PointerCoercion::UnsafeFnPointer) => {
// This is a no-op at the LLVM level.
operand.val
}
mir::CastKind::PointerCoercion(PointerCoercion::Unsize) => {
assert!(bx.cx().is_backend_scalar_pair(cast));
let (lldata, llextra) = match operand.val {
OperandValue::Pair(lldata, llextra) => {
// unsize from a fat pointer -- this is a
// "trait-object-to-supertrait" coercion.
(lldata, Some(llextra))
}
OperandValue::Immediate(lldata) => {
// "standard" unsize
(lldata, None)
}
OperandValue::Ref(..) => {
bug!("by-ref operand {:?} in `codegen_rvalue_operand`", operand);
}
OperandValue::ZeroSized => {
bug!("zero-sized operand {:?} in `codegen_rvalue_operand`", operand);
}
};
let (lldata, llextra) =
base::unsize_ptr(bx, lldata, operand.layout.ty, cast.ty, llextra);
OperandValue::Pair(lldata, llextra)
}
mir::CastKind::PointerCoercion(PointerCoercion::MutToConstPointer)
| mir::CastKind::PtrToPtr
if bx.cx().is_backend_scalar_pair(operand.layout) =>
{
if let OperandValue::Pair(data_ptr, meta) = operand.val {
if bx.cx().is_backend_scalar_pair(cast) {
OperandValue::Pair(data_ptr, meta)
} else {
// Cast of fat-ptr to thin-ptr is an extraction of data-ptr.
OperandValue::Immediate(data_ptr)
}
} else {
bug!("unexpected non-pair operand");
}
}
mir::CastKind::DynStar => {
let (lldata, llextra) = match operand.val {
OperandValue::Ref(_, _, _) => todo!(),
OperandValue::Immediate(v) => (v, None),
OperandValue::Pair(v, l) => (v, Some(l)),
OperandValue::ZeroSized => bug!("ZST -- which is not PointerLike -- in DynStar"),
};
let (lldata, llextra) =
base::cast_to_dyn_star(bx, lldata, operand.layout, cast.ty, llextra);
OperandValue::Pair(lldata, llextra)
}
mir::CastKind::PointerCoercion(
PointerCoercion::MutToConstPointer | PointerCoercion::ArrayToPointer,
)
| mir::CastKind::IntToInt
| mir::CastKind::FloatToInt
| mir::CastKind::FloatToFloat
| mir::CastKind::IntToFloat
| mir::CastKind::PtrToPtr
| mir::CastKind::FnPtrToPtr
// Since int2ptr can have arbitrary integer types as input (so we have to do
// sign extension and all that), it is currently best handled in the same code
// path as the other integer-to-X casts.
| mir::CastKind::PointerFromExposedAddress => {
assert!(bx.cx().is_backend_immediate(cast));
let ll_t_out = bx.cx().immediate_backend_type(cast);
if operand.layout.abi.is_uninhabited() {
let val = OperandValue::Immediate(bx.cx().const_poison(ll_t_out));
return OperandRef { val, layout: cast };
}
let r_t_in =
CastTy::from_ty(operand.layout.ty).expect("bad input type for cast");
let r_t_out = CastTy::from_ty(cast.ty).expect("bad output type for cast");
let ll_t_in = bx.cx().immediate_backend_type(operand.layout);
let llval = operand.immediate();
let newval = match (r_t_in, r_t_out) {
(CastTy::Int(i), CastTy::Int(_)) => {
bx.intcast(llval, ll_t_out, i.is_signed())
}
(CastTy::Float, CastTy::Float) => {
let srcsz = bx.cx().float_width(ll_t_in);
let dstsz = bx.cx().float_width(ll_t_out);
if dstsz > srcsz {
bx.fpext(llval, ll_t_out)
} else if srcsz > dstsz {
bx.fptrunc(llval, ll_t_out)
} else {
llval
}
}
(CastTy::Int(i), CastTy::Float) => {
if i.is_signed() {
bx.sitofp(llval, ll_t_out)
} else {
bx.uitofp(llval, ll_t_out)
}
}
(CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Ptr(_)) => {
bx.pointercast(llval, ll_t_out)
}
(CastTy::Int(i), CastTy::Ptr(_)) => {
let usize_llval =
bx.intcast(llval, bx.cx().type_isize(), i.is_signed());
bx.inttoptr(usize_llval, ll_t_out)
}
(CastTy::Float, CastTy::Int(IntTy::I)) => {
bx.cast_float_to_int(true, llval, ll_t_out)
}
(CastTy::Float, CastTy::Int(_)) => {
bx.cast_float_to_int(false, llval, ll_t_out)
}
_ => bug!("unsupported cast: {:?} to {:?}", operand.layout.ty, cast.ty),
};
OperandValue::Immediate(newval)
}
mir::CastKind::Transmute => {
self.codegen_transmute_operand(bx, operand, cast).unwrap_or_else(|| {
bug!("Unsupported transmute-as-operand of {operand:?} to {cast:?}");
})
}
};
OperandRef { val, layout: cast }
}
mir::Rvalue::Ref(_, bk, place) => {
let mk_ref = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| {
Ty::new_ref(
tcx,
tcx.lifetimes.re_erased,
ty::TypeAndMut { ty, mutbl: bk.to_mutbl_lossy() },
)
};
self.codegen_place_to_pointer(bx, place, mk_ref)
}
mir::Rvalue::CopyForDeref(place) => self.codegen_operand(bx, &Operand::Copy(place)),
mir::Rvalue::AddressOf(mutability, place) => {
let mk_ptr = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| {
Ty::new_ptr(tcx, ty::TypeAndMut { ty, mutbl: mutability })
};
self.codegen_place_to_pointer(bx, place, mk_ptr)
}
mir::Rvalue::Len(place) => {
let size = self.evaluate_array_len(bx, place);
OperandRef {
val: OperandValue::Immediate(size),
layout: bx.cx().layout_of(bx.tcx().types.usize),
}
}
mir::Rvalue::BinaryOp(op, box (ref lhs, ref rhs)) => {
let lhs = self.codegen_operand(bx, lhs);
let rhs = self.codegen_operand(bx, rhs);
let llresult = match (lhs.val, rhs.val) {
(
OperandValue::Pair(lhs_addr, lhs_extra),
OperandValue::Pair(rhs_addr, rhs_extra),
) => self.codegen_fat_ptr_binop(
bx,
op,
lhs_addr,
lhs_extra,
rhs_addr,
rhs_extra,
lhs.layout.ty,
),
(OperandValue::Immediate(lhs_val), OperandValue::Immediate(rhs_val)) => {
self.codegen_scalar_binop(bx, op, lhs_val, rhs_val, lhs.layout.ty)
}
_ => bug!(),
};
OperandRef {
val: OperandValue::Immediate(llresult),
layout: bx.cx().layout_of(op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty)),
}
}
mir::Rvalue::CheckedBinaryOp(op, box (ref lhs, ref rhs)) => {
let lhs = self.codegen_operand(bx, lhs);
let rhs = self.codegen_operand(bx, rhs);
let result = self.codegen_scalar_checked_binop(
bx,
op,
lhs.immediate(),
rhs.immediate(),
lhs.layout.ty,
);
let val_ty = op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty);
let operand_ty = Ty::new_tup(bx.tcx(), &[val_ty, bx.tcx().types.bool]);
OperandRef { val: result, layout: bx.cx().layout_of(operand_ty) }
}
mir::Rvalue::UnaryOp(op, ref operand) => {
let operand = self.codegen_operand(bx, operand);
let lloperand = operand.immediate();
let is_float = operand.layout.ty.is_floating_point();
let llval = match op {
mir::UnOp::Not => bx.not(lloperand),
mir::UnOp::Neg => {
if is_float {
bx.fneg(lloperand)
} else {
bx.neg(lloperand)
}
}
};
OperandRef { val: OperandValue::Immediate(llval), layout: operand.layout }
}
mir::Rvalue::Discriminant(ref place) => {
let discr_ty = rvalue.ty(self.mir, bx.tcx());
let discr_ty = self.monomorphize(discr_ty);
let discr = self.codegen_place(bx, place.as_ref()).codegen_get_discr(bx, discr_ty);
OperandRef {
val: OperandValue::Immediate(discr),
layout: self.cx.layout_of(discr_ty),
}
}
mir::Rvalue::NullaryOp(ref null_op, ty) => {
let ty = self.monomorphize(ty);
let layout = bx.cx().layout_of(ty);
let val = match null_op {
mir::NullOp::SizeOf => {
assert!(bx.cx().type_is_sized(ty));
layout.size.bytes()
}
mir::NullOp::AlignOf => {
assert!(bx.cx().type_is_sized(ty));
layout.align.abi.bytes()
}
mir::NullOp::OffsetOf(fields) => {
layout.offset_of_subfield(bx.cx(), fields.iter().map(|f| f.index())).bytes()
}
};
let val = bx.cx().const_usize(val);
let tcx = self.cx.tcx();
OperandRef {
val: OperandValue::Immediate(val),
layout: self.cx.layout_of(tcx.types.usize),
}
}
mir::Rvalue::ThreadLocalRef(def_id) => {
assert!(bx.cx().tcx().is_static(def_id));
let layout = bx.layout_of(bx.cx().tcx().static_ptr_ty(def_id));
let static_ = if !def_id.is_local() && bx.cx().tcx().needs_thread_local_shim(def_id)
{
let instance = ty::Instance {
def: ty::InstanceDef::ThreadLocalShim(def_id),
args: ty::GenericArgs::empty(),
};
let fn_ptr = bx.get_fn_addr(instance);
let fn_abi = bx.fn_abi_of_instance(instance, ty::List::empty());
let fn_ty = bx.fn_decl_backend_type(&fn_abi);
let fn_attrs = if bx.tcx().def_kind(instance.def_id()).has_codegen_attrs() {
Some(bx.tcx().codegen_fn_attrs(instance.def_id()))
} else {
None
};
bx.call(fn_ty, fn_attrs, Some(fn_abi), fn_ptr, &[], None)
} else {
bx.get_static(def_id)
};
OperandRef { val: OperandValue::Immediate(static_), layout }
}
mir::Rvalue::Use(ref operand) => self.codegen_operand(bx, operand),
mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => {
// According to `rvalue_creates_operand`, only ZST
// aggregate rvalues are allowed to be operands.
let ty = rvalue.ty(self.mir, self.cx.tcx());
OperandRef::zero_sized(self.cx.layout_of(self.monomorphize(ty)))
}
mir::Rvalue::ShallowInitBox(ref operand, content_ty) => {
let operand = self.codegen_operand(bx, operand);
let val = operand.immediate();
let content_ty = self.monomorphize(content_ty);
let box_layout = bx.cx().layout_of(Ty::new_box(bx.tcx(), content_ty));
OperandRef { val: OperandValue::Immediate(val), layout: box_layout }
}
}
}
fn evaluate_array_len(&mut self, bx: &mut Bx, place: mir::Place<'tcx>) -> Bx::Value {
// ZST are passed as operands and require special handling
// because codegen_place() panics if Local is operand.
if let Some(index) = place.as_local() {
if let LocalRef::Operand(op) = self.locals[index] {
if let ty::Array(_, n) = op.layout.ty.kind() {
let n = n.eval_target_usize(bx.cx().tcx(), ty::ParamEnv::reveal_all());
return bx.cx().const_usize(n);
}
}
}
// use common size calculation for non zero-sized types
let cg_value = self.codegen_place(bx, place.as_ref());
cg_value.len(bx.cx())
}
/// Codegen an `Rvalue::AddressOf` or `Rvalue::Ref`
fn codegen_place_to_pointer(
&mut self,
bx: &mut Bx,
place: mir::Place<'tcx>,
mk_ptr_ty: impl FnOnce(TyCtxt<'tcx>, Ty<'tcx>) -> Ty<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
let cg_place = self.codegen_place(bx, place.as_ref());
let ty = cg_place.layout.ty;
// Note: places are indirect, so storing the `llval` into the
// destination effectively creates a reference.
let val = if !bx.cx().type_has_metadata(ty) {
OperandValue::Immediate(cg_place.llval)
} else {
OperandValue::Pair(cg_place.llval, cg_place.llextra.unwrap())
};
OperandRef { val, layout: self.cx.layout_of(mk_ptr_ty(self.cx.tcx(), ty)) }
}
pub fn codegen_scalar_binop(
&mut self,
bx: &mut Bx,
op: mir::BinOp,
lhs: Bx::Value,
rhs: Bx::Value,
input_ty: Ty<'tcx>,
) -> Bx::Value {
let is_float = input_ty.is_floating_point();
let is_signed = input_ty.is_signed();
match op {
mir::BinOp::Add => {
if is_float {
bx.fadd(lhs, rhs)
} else {
bx.add(lhs, rhs)
}
}
mir::BinOp::AddUnchecked => {
if is_signed {
bx.unchecked_sadd(lhs, rhs)
} else {
bx.unchecked_uadd(lhs, rhs)
}
}
mir::BinOp::Sub => {
if is_float {
bx.fsub(lhs, rhs)
} else {
bx.sub(lhs, rhs)
}
}
mir::BinOp::SubUnchecked => {
if is_signed {
bx.unchecked_ssub(lhs, rhs)
} else {
bx.unchecked_usub(lhs, rhs)
}
}
mir::BinOp::Mul => {
if is_float {
bx.fmul(lhs, rhs)
} else {
bx.mul(lhs, rhs)
}
}
mir::BinOp::MulUnchecked => {
if is_signed {
bx.unchecked_smul(lhs, rhs)
} else {
bx.unchecked_umul(lhs, rhs)
}
}
mir::BinOp::Div => {
if is_float {
bx.fdiv(lhs, rhs)
} else if is_signed {
bx.sdiv(lhs, rhs)
} else {
bx.udiv(lhs, rhs)
}
}
mir::BinOp::Rem => {
if is_float {
bx.frem(lhs, rhs)
} else if is_signed {
bx.srem(lhs, rhs)
} else {
bx.urem(lhs, rhs)
}
}
mir::BinOp::BitOr => bx.or(lhs, rhs),
mir::BinOp::BitAnd => bx.and(lhs, rhs),
mir::BinOp::BitXor => bx.xor(lhs, rhs),
mir::BinOp::Offset => {
let pointee_type = input_ty
.builtin_deref(true)
.unwrap_or_else(|| bug!("deref of non-pointer {:?}", input_ty))
.ty;
let pointee_layout = bx.cx().layout_of(pointee_type);
if pointee_layout.is_zst() {
// `Offset` works in terms of the size of pointee,
// so offsetting a pointer to ZST is a noop.
lhs
} else {
let llty = bx.cx().backend_type(pointee_layout);
bx.inbounds_gep(llty, lhs, &[rhs])
}
}
mir::BinOp::Shl => common::build_masked_lshift(bx, lhs, rhs),
mir::BinOp::ShlUnchecked => {
let rhs = base::cast_shift_expr_rhs(bx, lhs, rhs);
bx.shl(lhs, rhs)
}
mir::BinOp::Shr => common::build_masked_rshift(bx, input_ty, lhs, rhs),
mir::BinOp::ShrUnchecked => {
let rhs = base::cast_shift_expr_rhs(bx, lhs, rhs);
if is_signed { bx.ashr(lhs, rhs) } else { bx.lshr(lhs, rhs) }
}
mir::BinOp::Ne
| mir::BinOp::Lt
| mir::BinOp::Gt
| mir::BinOp::Eq
| mir::BinOp::Le
| mir::BinOp::Ge => {
if is_float {
bx.fcmp(base::bin_op_to_fcmp_predicate(op.to_hir_binop()), lhs, rhs)
} else {
bx.icmp(base::bin_op_to_icmp_predicate(op.to_hir_binop(), is_signed), lhs, rhs)
}
}
}
}
pub fn codegen_fat_ptr_binop(
&mut self,
bx: &mut Bx,
op: mir::BinOp,
lhs_addr: Bx::Value,
lhs_extra: Bx::Value,
rhs_addr: Bx::Value,
rhs_extra: Bx::Value,
_input_ty: Ty<'tcx>,
) -> Bx::Value {
match op {
mir::BinOp::Eq => {
let lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr);
let rhs = bx.icmp(IntPredicate::IntEQ, lhs_extra, rhs_extra);
bx.and(lhs, rhs)
}
mir::BinOp::Ne => {
let lhs = bx.icmp(IntPredicate::IntNE, lhs_addr, rhs_addr);
let rhs = bx.icmp(IntPredicate::IntNE, lhs_extra, rhs_extra);
bx.or(lhs, rhs)
}
mir::BinOp::Le | mir::BinOp::Lt | mir::BinOp::Ge | mir::BinOp::Gt => {
// a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1)
let (op, strict_op) = match op {
mir::BinOp::Lt => (IntPredicate::IntULT, IntPredicate::IntULT),
mir::BinOp::Le => (IntPredicate::IntULE, IntPredicate::IntULT),
mir::BinOp::Gt => (IntPredicate::IntUGT, IntPredicate::IntUGT),
mir::BinOp::Ge => (IntPredicate::IntUGE, IntPredicate::IntUGT),
_ => bug!(),
};
let lhs = bx.icmp(strict_op, lhs_addr, rhs_addr);
let and_lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr);
let and_rhs = bx.icmp(op, lhs_extra, rhs_extra);
let rhs = bx.and(and_lhs, and_rhs);
bx.or(lhs, rhs)
}
_ => {
bug!("unexpected fat ptr binop");
}
}
}
pub fn codegen_scalar_checked_binop(
&mut self,
bx: &mut Bx,
op: mir::BinOp,
lhs: Bx::Value,
rhs: Bx::Value,
input_ty: Ty<'tcx>,
) -> OperandValue<Bx::Value> {
let (val, of) = match op {
// These are checked using intrinsics
mir::BinOp::Add | mir::BinOp::Sub | mir::BinOp::Mul => {
let oop = match op {
mir::BinOp::Add => OverflowOp::Add,
mir::BinOp::Sub => OverflowOp::Sub,
mir::BinOp::Mul => OverflowOp::Mul,
_ => unreachable!(),
};
bx.checked_binop(oop, input_ty, lhs, rhs)
}
_ => bug!("Operator `{:?}` is not a checkable operator", op),
};
OperandValue::Pair(val, of)
}
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
pub fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>, span: Span) -> bool {
match *rvalue {
mir::Rvalue::Cast(mir::CastKind::Transmute, ref operand, cast_ty) => {
let operand_ty = operand.ty(self.mir, self.cx.tcx());
let cast_layout = self.cx.layout_of(self.monomorphize(cast_ty));
let operand_layout = self.cx.layout_of(self.monomorphize(operand_ty));
match (self.value_kind(operand_layout), self.value_kind(cast_layout)) {
// Can always load from a pointer as needed
(OperandValueKind::Ref, _) => true,
// ZST-to-ZST is the easiest thing ever
(OperandValueKind::ZeroSized, OperandValueKind::ZeroSized) => true,
// But if only one of them is a ZST the sizes can't match
(OperandValueKind::ZeroSized, _) | (_, OperandValueKind::ZeroSized) => false,
// Need to generate an `alloc` to get a pointer from an immediate
(OperandValueKind::Immediate(..) | OperandValueKind::Pair(..), OperandValueKind::Ref) => false,
// When we have scalar immediates, we can only convert things
// where the sizes match, to avoid endianness questions.
(OperandValueKind::Immediate(a), OperandValueKind::Immediate(b)) =>
a.size(self.cx) == b.size(self.cx),
(OperandValueKind::Pair(a0, a1), OperandValueKind::Pair(b0, b1)) =>
a0.size(self.cx) == b0.size(self.cx) && a1.size(self.cx) == b1.size(self.cx),
// Send mixings between scalars and pairs through the memory route
// FIXME: Maybe this could use insertvalue/extractvalue instead?
(OperandValueKind::Immediate(..), OperandValueKind::Pair(..)) |
(OperandValueKind::Pair(..), OperandValueKind::Immediate(..)) => false,
}
}
mir::Rvalue::Ref(..) |
mir::Rvalue::CopyForDeref(..) |
mir::Rvalue::AddressOf(..) |
mir::Rvalue::Len(..) |
mir::Rvalue::Cast(..) | // (*)
mir::Rvalue::ShallowInitBox(..) | // (*)
mir::Rvalue::BinaryOp(..) |
mir::Rvalue::CheckedBinaryOp(..) |
mir::Rvalue::UnaryOp(..) |
mir::Rvalue::Discriminant(..) |
mir::Rvalue::NullaryOp(..) |
mir::Rvalue::ThreadLocalRef(_) |
mir::Rvalue::Use(..) => // (*)
true,
mir::Rvalue::Repeat(..) |
mir::Rvalue::Aggregate(..) => {
let ty = rvalue.ty(self.mir, self.cx.tcx());
let ty = self.monomorphize(ty);
self.cx.spanned_layout_of(ty, span).is_zst()
}
}
// (*) this is only true if the type is suitable
}
/// Gets which variant of [`OperandValue`] is expected for a particular type.
fn value_kind(&self, layout: TyAndLayout<'tcx>) -> OperandValueKind {
if layout.is_zst() {
OperandValueKind::ZeroSized
} else if self.cx.is_backend_immediate(layout) {
debug_assert!(!self.cx.is_backend_scalar_pair(layout));
OperandValueKind::Immediate(match layout.abi {
abi::Abi::Scalar(s) => s,
abi::Abi::Vector { element, .. } => element,
x => span_bug!(self.mir.span, "Couldn't translate {x:?} as backend immediate"),
})
} else if self.cx.is_backend_scalar_pair(layout) {
let abi::Abi::ScalarPair(s1, s2) = layout.abi else {
span_bug!(
self.mir.span,
"Couldn't translate {:?} as backend scalar pair",
layout.abi,
);
};
OperandValueKind::Pair(s1, s2)
} else {
OperandValueKind::Ref
}
}
}
/// The variants of this match [`OperandValue`], giving details about the
/// backend values that will be held in that other type.
#[derive(Debug, Copy, Clone)]
enum OperandValueKind {
Ref,
Immediate(abi::Scalar),
Pair(abi::Scalar, abi::Scalar),
ZeroSized,
}