blob: d2b5734d5254a93160c58d466fa8b1840fa5fa48 [file] [log] [blame]
//! Macros shared throughout the compiler-builtins implementation
/// Changes the visibility to `pub` if feature "public-test-deps" is set
#[cfg(not(feature = "public-test-deps"))]
macro_rules! public_test_dep {
($(#[$($meta:meta)*])* pub(crate) $ident:ident $($tokens:tt)*) => {
$(#[$($meta)*])* pub(crate) $ident $($tokens)*
};
}
/// Changes the visibility to `pub` if feature "public-test-deps" is set
#[cfg(feature = "public-test-deps")]
macro_rules! public_test_dep {
{$(#[$($meta:meta)*])* pub(crate) $ident:ident $($tokens:tt)*} => {
$(#[$($meta)*])* pub $ident $($tokens)*
};
}
/// The "main macro" used for defining intrinsics.
///
/// The compiler-builtins library is super platform-specific with tons of crazy
/// little tweaks for various platforms. As a result it *could* involve a lot of
/// #[cfg] and macro soup, but the intention is that this macro alleviates a lot
/// of that complexity. Ideally this macro has all the weird ABI things
/// platforms need and elsewhere in this library it just looks like normal Rust
/// code.
///
/// When the weak-intrinsics feature is enabled, all intrinsics functions are
/// marked with #[linkage = "weak"] so that they can be replaced by another
/// implementation at link time. This is particularly useful for mixed Rust/C++
/// binaries that want to use the C++ intrinsics, otherwise linking against the
/// Rust stdlib will replace those from the compiler-rt library.
///
/// This macro is structured to be invoked with a bunch of functions that looks
/// like:
/// ```ignore
/// intrinsics! {
/// pub extern "C" fn foo(a: i32) -> u32 {
/// // ...
/// }
///
/// #[nonstandard_attribute]
/// pub extern "C" fn bar(a: i32) -> u32 {
/// // ...
/// }
/// }
/// ```
///
/// Each function is defined in a manner that looks like a normal Rust function.
/// The macro then accepts a few nonstandard attributes that can decorate
/// various functions. Each of the attributes is documented below with what it
/// can do, and each of them slightly tweaks how further expansion happens.
///
/// A quick overview of attributes supported right now are:
///
/// * `weak` - indicates that the function should always be given weak linkage.
/// This attribute must come before other attributes, as the other attributes
/// will generate the final output function and need to have `weak` modify
/// them.
/// * `maybe_use_optimized_c_shim` - indicates that the Rust implementation is
/// ignored if an optimized C version was compiled.
/// * `aapcs_on_arm` - forces the ABI of the function to be `"aapcs"` on ARM and
/// the specified ABI everywhere else.
/// * `unadjusted_on_win64` - like `aapcs_on_arm` this switches to the
/// `"unadjusted"` abi on Win64 and the specified abi elsewhere.
/// * `win64_128bit_abi_hack` - this attribute is used for 128-bit integer
/// intrinsics where the ABI is slightly tweaked on Windows platforms, but
/// it's a normal ABI elsewhere for returning a 128 bit integer.
/// * `arm_aeabi_alias` - handles the "aliasing" of various intrinsics on ARM
/// their otherwise typical names to other prefixed ones.
macro_rules! intrinsics {
() => ();
// Support cfg_attr:
(
#[cfg_attr($e:meta, $($attr:tt)*)]
$(#[$($attrs:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($e)]
intrinsics! {
#[$($attr)*]
$(#[$($attrs)*])*
pub extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
#[cfg(not($e))]
intrinsics! {
$(#[$($attrs)*])*
pub extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Same as above but for unsafe.
(
#[cfg_attr($e:meta, $($attr:tt)*)]
$(#[$($attrs:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($e)]
intrinsics! {
#[$($attr)*]
$(#[$($attrs)*])*
pub unsafe extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
#[cfg(not($e))]
intrinsics! {
$(#[$($attrs)*])*
pub unsafe extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Explicit weak linkage gets dropped when weak-intrinsics is on since it
// will be added unconditionally to all intrinsics and would conflict
// otherwise.
(
#[weak]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(feature = "weak-intrinsics")]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(not(feature = "weak-intrinsics"))]
intrinsics! {
$(#[$($attr)*])*
#[linkage = "weak"]
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Same as above but for unsafe.
(
#[weak]
$(#[$($attr:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(feature = "weak-intrinsics")]
intrinsics! {
$(#[$($attr)*])*
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(not(feature = "weak-intrinsics"))]
intrinsics! {
$(#[$($attr)*])*
#[linkage = "weak"]
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Right now there's a bunch of architecture-optimized intrinsics in the
// stock compiler-rt implementation. Not all of these have been ported over
// to Rust yet so when the `c` feature of this crate is enabled we fall back
// to the architecture-specific versions which should be more optimized. The
// purpose of this macro is to easily allow specifying this.
//
// The `#[maybe_use_optimized_c_shim]` attribute indicates that this
// intrinsic may have an optimized C version. In these situations the build
// script, if the C code is enabled and compiled, will emit a cfg directive
// to get passed to rustc for our compilation. If that cfg is set we skip
// the Rust implementation, but if the attribute is not enabled then we
// compile in the Rust implementation.
(
#[maybe_use_optimized_c_shim]
$(#[$($attr:tt)*])*
pub $(unsafe $(@ $empty:tt)? )? extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($name = "optimized-c")]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub $(unsafe $($empty)? )? extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
extern $abi {
fn $name($($argname: $ty),*) $(-> $ret)?;
}
unsafe {
$name($($argname),*)
}
}
#[cfg(not($name = "optimized-c"))]
intrinsics! {
$(#[$($attr)*])*
pub $(unsafe $($empty)? )? extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// We recognize the `#[aapcs_on_arm]` attribute here and generate the
// same intrinsic but force it to have the `"aapcs"` calling convention on
// ARM and `"C"` elsewhere.
(
#[aapcs_on_arm]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
intrinsics! {
$(#[$($attr)*])*
pub extern "aapcs" fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Like aapcs above we recognize an attribute for the "unadjusted" abi on
// win64 for some methods.
(
#[unadjusted_on_win64]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(any(windows, all(target_os = "uefi", target_arch = "x86_64")), target_pointer_width = "64"))]
intrinsics! {
$(#[$($attr)*])*
pub extern "unadjusted" fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(not(all(any(windows, all(target_os = "uefi", target_arch = "x86_64")), target_pointer_width = "64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Some intrinsics on win64 which return a 128-bit integer have an.. unusual
// calling convention. That's managed here with this "abi hack" which alters
// the generated symbol's ABI.
//
// This will still define a function in this crate with the given name and
// signature, but the actual symbol for the intrinsic may have a slightly
// different ABI on win64.
(
#[win64_128bit_abi_hack]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(any(windows, target_os = "uefi"), target_arch = "x86_64"))]
$(#[$($attr)*])*
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(all(any(windows, target_os = "uefi"), target_arch = "x86_64"))]
pub mod $name {
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub extern $abi fn $name( $($argname: $ty),* )
-> $crate::macros::win64_128bit_abi_hack::U64x2
{
let e: $($ret)? = super::$name($($argname),*);
$crate::macros::win64_128bit_abi_hack::U64x2::from(e)
}
}
#[cfg(not(all(any(windows, target_os = "uefi"), target_arch = "x86_64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// A bunch of intrinsics on ARM are aliased in the standard compiler-rt
// build under `__aeabi_*` aliases, and LLVM will call these instead of the
// original function. The aliasing here is used to generate these symbols in
// the object file.
(
#[arm_aeabi_alias = $alias:ident]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(target_arch = "arm")]
pub mod $name {
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
#[cfg(target_arch = "arm")]
pub mod $alias {
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(any(all(not(windows), not(target_vendor="apple"), feature = "weak-intrinsics")), linkage = "weak")]
pub extern "aapcs" fn $alias( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// C mem* functions are only generated when the "mem" feature is enabled.
(
#[mem_builtin]
$(#[$($attr:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(feature = "mem")]
pub mod $name {
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
intrinsics!($($rest)*);
);
// Naked functions are special: we can't generate wrappers for them since
// they use a custom calling convention.
(
#[naked]
$(#[$($attr:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
pub mod $name {
#[naked]
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// For some intrinsics, AVR uses a custom calling convention¹ that does not
// match our definitions here. Ideally we would just use hand-written naked
// functions, but that's quite a lot of code to port² - so for the time
// being we are just ignoring the problematic functions, letting avr-gcc
// (which is required to compile to AVR anyway) link them from libgcc.
//
// ¹ https://gcc.gnu.org/wiki/avr-gcc (see "Exceptions to the Calling
// Convention")
// ² https://github.com/gcc-mirror/gcc/blob/31048012db98f5ec9c2ba537bfd850374bdd771f/libgcc/config/avr/lib1funcs.S
(
#[avr_skip]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(not(target_arch = "avr"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// This is the final catch-all rule. At this point we generate an
// intrinsic with a conditional `#[no_mangle]` directive to avoid
// interfering with duplicate symbols and whatnot during testing.
//
// The implementation is placed in a separate module, to take advantage
// of the fact that rustc partitions functions into code generation
// units based on module they are defined in. As a result we will have
// a separate object file for each intrinsic. For further details see
// corresponding PR in rustc https://github.com/rust-lang/rust/pull/70846
//
// After the intrinsic is defined we just continue with the rest of the
// input we were given.
(
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
pub mod $name {
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
intrinsics!($($rest)*);
);
// Same as the above for unsafe functions.
(
$(#[$($attr:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
pub mod $name {
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(feature = "weak-intrinsics", linkage = "weak")]
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
intrinsics!($($rest)*);
);
}
// Hack for LLVM expectations for ABI on windows. This is used by the
// `#[win64_128bit_abi_hack]` attribute recognized above
#[cfg(all(any(windows, target_os = "uefi"), target_pointer_width = "64"))]
pub mod win64_128bit_abi_hack {
#[repr(simd)]
pub struct U64x2(u64, u64);
impl From<i128> for U64x2 {
fn from(i: i128) -> U64x2 {
use crate::int::DInt;
let j = i as u128;
U64x2(j.lo(), j.hi())
}
}
impl From<u128> for U64x2 {
fn from(i: u128) -> U64x2 {
use crate::int::DInt;
U64x2(i.lo(), i.hi())
}
}
}