blob: 204834984a227b7acf1218b6182b19e87eb05be7 [file] [log] [blame]
//! OS-based thread local storage
//!
//! This module provides an implementation of OS-based thread local storage,
//! using the native OS-provided facilities (think `TlsAlloc` or
//! `pthread_setspecific`). The interface of this differs from the other types
//! of thread-local-storage provided in this crate in that OS-based TLS can only
//! get/set pointer-sized data, possibly with an associated destructor.
//!
//! This module also provides two flavors of TLS. One is intended for static
//! initialization, and does not contain a `Drop` implementation to deallocate
//! the OS-TLS key. The other is a type which does implement `Drop` and hence
//! has a safe interface.
//!
//! # Usage
//!
//! This module should likely not be used directly unless other primitives are
//! being built on. Types such as `thread_local::spawn::Key` are likely much
//! more useful in practice than this OS-based version which likely requires
//! unsafe code to interoperate with.
//!
//! # Examples
//!
//! Using a dynamically allocated TLS key. Note that this key can be shared
//! among many threads via an `Arc`.
//!
//! ```ignore (cannot-doctest-private-modules)
//! let key = Key::new(None);
//! assert!(key.get().is_null());
//! key.set(1 as *mut u8);
//! assert!(!key.get().is_null());
//!
//! drop(key); // deallocate this TLS slot.
//! ```
//!
//! Sometimes a statically allocated key is either required or easier to work
//! with, however.
//!
//! ```ignore (cannot-doctest-private-modules)
//! static KEY: StaticKey = INIT;
//!
//! unsafe {
//! assert!(KEY.get().is_null());
//! KEY.set(1 as *mut u8);
//! }
//! ```
#![allow(non_camel_case_types)]
#![unstable(feature = "thread_local_internals", issue = "none")]
#![allow(dead_code)]
#[cfg(test)]
mod tests;
use crate::sync::atomic::{self, AtomicUsize, Ordering};
use crate::sys::thread_local_key as imp;
/// A type for TLS keys that are statically allocated.
///
/// This type is entirely `unsafe` to use as it does not protect against
/// use-after-deallocation or use-during-deallocation.
///
/// The actual OS-TLS key is lazily allocated when this is used for the first
/// time. The key is also deallocated when the Rust runtime exits or `destroy`
/// is called, whichever comes first.
///
/// # Examples
///
/// ```ignore (cannot-doctest-private-modules)
/// use tls::os::{StaticKey, INIT};
///
/// // Use a regular global static to store the key.
/// static KEY: StaticKey = INIT;
///
/// // The state provided via `get` and `set` is thread-local.
/// unsafe {
/// assert!(KEY.get().is_null());
/// KEY.set(1 as *mut u8);
/// }
/// ```
pub struct StaticKey {
/// Inner static TLS key (internals).
key: AtomicUsize,
/// Destructor for the TLS value.
///
/// See `Key::new` for information about when the destructor runs and how
/// it runs.
dtor: Option<unsafe extern "C" fn(*mut u8)>,
}
/// Constant initialization value for static TLS keys.
///
/// This value specifies no destructor by default.
pub const INIT: StaticKey = StaticKey::new(None);
// Define a sentinel value that is likely not to be returned
// as a TLS key.
#[cfg(not(target_os = "nto"))]
const KEY_SENTVAL: usize = 0;
// On QNX Neutrino, 0 is always returned when currently not in use.
// Using 0 would mean to always create two keys and remote the first
// one (with value of 0) immediately afterwards.
#[cfg(target_os = "nto")]
const KEY_SENTVAL: usize = libc::PTHREAD_KEYS_MAX + 1;
impl StaticKey {
#[rustc_const_unstable(feature = "thread_local_internals", issue = "none")]
pub const fn new(dtor: Option<unsafe extern "C" fn(*mut u8)>) -> StaticKey {
StaticKey { key: atomic::AtomicUsize::new(KEY_SENTVAL), dtor }
}
/// Gets the value associated with this TLS key
///
/// This will lazily allocate a TLS key from the OS if one has not already
/// been allocated.
#[inline]
pub unsafe fn get(&self) -> *mut u8 {
imp::get(self.key())
}
/// Sets this TLS key to a new value.
///
/// This will lazily allocate a TLS key from the OS if one has not already
/// been allocated.
#[inline]
pub unsafe fn set(&self, val: *mut u8) {
imp::set(self.key(), val)
}
#[inline]
unsafe fn key(&self) -> imp::Key {
match self.key.load(Ordering::Relaxed) {
KEY_SENTVAL => self.lazy_init() as imp::Key,
n => n as imp::Key,
}
}
unsafe fn lazy_init(&self) -> usize {
// POSIX allows the key created here to be KEY_SENTVAL, but the compare_exchange
// below relies on using KEY_SENTVAL as a sentinel value to check who won the
// race to set the shared TLS key. As far as I know, there is no
// guaranteed value that cannot be returned as a posix_key_create key,
// so there is no value we can initialize the inner key with to
// prove that it has not yet been set. As such, we'll continue using a
// value of KEY_SENTVAL, but with some gyrations to make sure we have a non-KEY_SENTVAL
// value returned from the creation routine.
// FIXME: this is clearly a hack, and should be cleaned up.
let key1 = imp::create(self.dtor);
let key = if key1 as usize != KEY_SENTVAL {
key1
} else {
let key2 = imp::create(self.dtor);
imp::destroy(key1);
key2
};
rtassert!(key as usize != KEY_SENTVAL);
match self.key.compare_exchange(
KEY_SENTVAL,
key as usize,
Ordering::SeqCst,
Ordering::SeqCst,
) {
// The CAS succeeded, so we've created the actual key
Ok(_) => key as usize,
// If someone beat us to the punch, use their key instead
Err(n) => {
imp::destroy(key);
n
}
}
}
}