blob: 509f9fdae395a7eb7fb41b6c7bf69842d2c6fa3f [file] [log] [blame]
use core::ops;
mod specialized_div_rem;
pub mod addsub;
pub mod leading_zeros;
pub mod mul;
pub mod sdiv;
pub mod shift;
pub mod udiv;
pub use self::leading_zeros::__clzsi2;
public_test_dep! {
/// Trait for some basic operations on integers
pub(crate) trait Int:
Copy
+ core::fmt::Debug
+ PartialEq
+ PartialOrd
+ ops::AddAssign
+ ops::SubAssign
+ ops::BitAndAssign
+ ops::BitOrAssign
+ ops::BitXorAssign
+ ops::ShlAssign<i32>
+ ops::ShrAssign<u32>
+ ops::Add<Output = Self>
+ ops::Sub<Output = Self>
+ ops::Div<Output = Self>
+ ops::Shl<u32, Output = Self>
+ ops::Shr<u32, Output = Self>
+ ops::BitOr<Output = Self>
+ ops::BitXor<Output = Self>
+ ops::BitAnd<Output = Self>
+ ops::Not<Output = Self>
{
/// Type with the same width but other signedness
type OtherSign: Int;
/// Unsigned version of Self
type UnsignedInt: Int;
/// If `Self` is a signed integer
const SIGNED: bool;
/// The bitwidth of the int type
const BITS: u32;
const ZERO: Self;
const ONE: Self;
const MIN: Self;
const MAX: Self;
/// LUT used for maximizing the space covered and minimizing the computational cost of fuzzing
/// in `testcrate`. For example, Self = u128 produces [0,1,2,7,8,15,16,31,32,63,64,95,96,111,
/// 112,119,120,125,126,127].
const FUZZ_LENGTHS: [u8; 20];
/// The number of entries of `FUZZ_LENGTHS` actually used. The maximum is 20 for u128.
const FUZZ_NUM: usize;
fn unsigned(self) -> Self::UnsignedInt;
fn from_unsigned(unsigned: Self::UnsignedInt) -> Self;
fn from_bool(b: bool) -> Self;
/// Prevents the need for excessive conversions between signed and unsigned
fn logical_shr(self, other: u32) -> Self;
/// Absolute difference between two integers.
fn abs_diff(self, other: Self) -> Self::UnsignedInt;
// copied from primitive integers, but put in a trait
fn is_zero(self) -> bool;
fn wrapping_neg(self) -> Self;
fn wrapping_add(self, other: Self) -> Self;
fn wrapping_mul(self, other: Self) -> Self;
fn wrapping_sub(self, other: Self) -> Self;
fn wrapping_shl(self, other: u32) -> Self;
fn wrapping_shr(self, other: u32) -> Self;
fn rotate_left(self, other: u32) -> Self;
fn overflowing_add(self, other: Self) -> (Self, bool);
fn leading_zeros(self) -> u32;
}
}
macro_rules! int_impl_common {
($ty:ty) => {
const BITS: u32 = <Self as Int>::ZERO.count_zeros();
const SIGNED: bool = Self::MIN != Self::ZERO;
const ZERO: Self = 0;
const ONE: Self = 1;
const MIN: Self = <Self>::MIN;
const MAX: Self = <Self>::MAX;
const FUZZ_LENGTHS: [u8; 20] = {
let bits = <Self as Int>::BITS;
let mut v = [0u8; 20];
v[0] = 0;
v[1] = 1;
v[2] = 2; // important for parity and the iX::MIN case when reversed
let mut i = 3;
// No need for any more until the byte boundary, because there should be no algorithms
// that are sensitive to anything not next to byte boundaries after 2. We also scale
// in powers of two, which is important to prevent u128 corner tests from getting too
// big.
let mut l = 8;
loop {
if l >= ((bits / 2) as u8) {
break;
}
// get both sides of the byte boundary
v[i] = l - 1;
i += 1;
v[i] = l;
i += 1;
l *= 2;
}
if bits != 8 {
// add the lower side of the middle boundary
v[i] = ((bits / 2) - 1) as u8;
i += 1;
}
// We do not want to jump directly from the Self::BITS/2 boundary to the Self::BITS
// boundary because of algorithms that split the high part up. We reverse the scaling
// as we go to Self::BITS.
let mid = i;
let mut j = 1;
loop {
v[i] = (bits as u8) - (v[mid - j]) - 1;
if j == mid {
break;
}
i += 1;
j += 1;
}
v
};
const FUZZ_NUM: usize = {
let log2 = (<Self as Int>::BITS - 1).count_ones() as usize;
if log2 == 3 {
// case for u8
6
} else {
// 3 entries on each extreme, 2 in the middle, and 4 for each scale of intermediate
// boundaries.
8 + (4 * (log2 - 4))
}
};
fn from_bool(b: bool) -> Self {
b as $ty
}
fn logical_shr(self, other: u32) -> Self {
Self::from_unsigned(self.unsigned().wrapping_shr(other))
}
fn is_zero(self) -> bool {
self == Self::ZERO
}
fn wrapping_neg(self) -> Self {
<Self>::wrapping_neg(self)
}
fn wrapping_add(self, other: Self) -> Self {
<Self>::wrapping_add(self, other)
}
fn wrapping_mul(self, other: Self) -> Self {
<Self>::wrapping_mul(self, other)
}
fn wrapping_sub(self, other: Self) -> Self {
<Self>::wrapping_sub(self, other)
}
fn wrapping_shl(self, other: u32) -> Self {
<Self>::wrapping_shl(self, other)
}
fn wrapping_shr(self, other: u32) -> Self {
<Self>::wrapping_shr(self, other)
}
fn rotate_left(self, other: u32) -> Self {
<Self>::rotate_left(self, other)
}
fn overflowing_add(self, other: Self) -> (Self, bool) {
<Self>::overflowing_add(self, other)
}
fn leading_zeros(self) -> u32 {
<Self>::leading_zeros(self)
}
};
}
macro_rules! int_impl {
($ity:ty, $uty:ty) => {
impl Int for $uty {
type OtherSign = $ity;
type UnsignedInt = $uty;
fn unsigned(self) -> $uty {
self
}
// It makes writing macros easier if this is implemented for both signed and unsigned
#[allow(clippy::wrong_self_convention)]
fn from_unsigned(me: $uty) -> Self {
me
}
fn abs_diff(self, other: Self) -> Self {
if self < other {
other.wrapping_sub(self)
} else {
self.wrapping_sub(other)
}
}
int_impl_common!($uty);
}
impl Int for $ity {
type OtherSign = $uty;
type UnsignedInt = $uty;
fn unsigned(self) -> $uty {
self as $uty
}
fn from_unsigned(me: $uty) -> Self {
me as $ity
}
fn abs_diff(self, other: Self) -> $uty {
self.wrapping_sub(other).wrapping_abs() as $uty
}
int_impl_common!($ity);
}
};
}
int_impl!(isize, usize);
int_impl!(i8, u8);
int_impl!(i16, u16);
int_impl!(i32, u32);
int_impl!(i64, u64);
int_impl!(i128, u128);
public_test_dep! {
/// Trait for integers twice the bit width of another integer. This is implemented for all
/// primitives except for `u8`, because there is not a smaller primitive.
pub(crate) trait DInt: Int {
/// Integer that is half the bit width of the integer this trait is implemented for
type H: HInt<D = Self> + Int;
/// Returns the low half of `self`
fn lo(self) -> Self::H;
/// Returns the high half of `self`
fn hi(self) -> Self::H;
/// Returns the low and high halves of `self` as a tuple
fn lo_hi(self) -> (Self::H, Self::H);
/// Constructs an integer using lower and higher half parts
fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self;
}
}
public_test_dep! {
/// Trait for integers half the bit width of another integer. This is implemented for all
/// primitives except for `u128`, because it there is not a larger primitive.
pub(crate) trait HInt: Int {
/// Integer that is double the bit width of the integer this trait is implemented for
type D: DInt<H = Self> + Int;
/// Widens (using default extension) the integer to have double bit width
fn widen(self) -> Self::D;
/// Widens (zero extension only) the integer to have double bit width. This is needed to get
/// around problems with associated type bounds (such as `Int<Othersign: DInt>`) being unstable
fn zero_widen(self) -> Self::D;
/// Widens the integer to have double bit width and shifts the integer into the higher bits
fn widen_hi(self) -> Self::D;
/// Widening multiplication with zero widening. This cannot overflow.
fn zero_widen_mul(self, rhs: Self) -> Self::D;
/// Widening multiplication. This cannot overflow.
fn widen_mul(self, rhs: Self) -> Self::D;
}
}
macro_rules! impl_d_int {
($($X:ident $D:ident),*) => {
$(
impl DInt for $D {
type H = $X;
fn lo(self) -> Self::H {
self as $X
}
fn hi(self) -> Self::H {
(self >> <$X as Int>::BITS) as $X
}
fn lo_hi(self) -> (Self::H, Self::H) {
(self.lo(), self.hi())
}
fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self {
lo.zero_widen() | hi.widen_hi()
}
}
)*
};
}
macro_rules! impl_h_int {
($($H:ident $uH:ident $X:ident),*) => {
$(
impl HInt for $H {
type D = $X;
fn widen(self) -> Self::D {
self as $X
}
fn zero_widen(self) -> Self::D {
(self as $uH) as $X
}
fn widen_hi(self) -> Self::D {
(self as $X) << <$H as Int>::BITS
}
fn zero_widen_mul(self, rhs: Self) -> Self::D {
self.zero_widen().wrapping_mul(rhs.zero_widen())
}
fn widen_mul(self, rhs: Self) -> Self::D {
self.widen().wrapping_mul(rhs.widen())
}
}
)*
};
}
impl_d_int!(u8 u16, u16 u32, u32 u64, u64 u128, i8 i16, i16 i32, i32 i64, i64 i128);
impl_h_int!(
u8 u8 u16,
u16 u16 u32,
u32 u32 u64,
u64 u64 u128,
i8 u8 i16,
i16 u16 i32,
i32 u32 i64,
i64 u64 i128
);
public_test_dep! {
/// Trait to express (possibly lossy) casting of integers
pub(crate) trait CastInto<T: Copy>: Copy {
fn cast(self) -> T;
}
}
macro_rules! cast_into {
($ty:ty) => {
cast_into!($ty; usize, isize, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);
};
($ty:ty; $($into:ty),*) => {$(
impl CastInto<$into> for $ty {
fn cast(self) -> $into {
self as $into
}
}
)*};
}
cast_into!(usize);
cast_into!(isize);
cast_into!(u8);
cast_into!(i8);
cast_into!(u16);
cast_into!(i16);
cast_into!(u32);
cast_into!(i32);
cast_into!(u64);
cast_into!(i64);
cast_into!(u128);
cast_into!(i128);