blob: 4b7c5c9d912b16537cef139b835192b166ebb7f6 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <google/protobuf/compiler/cpp/helpers.h>
#include <cstdint>
#include <functional>
#include <limits>
#include <map>
#include <memory>
#include <queue>
#include <unordered_set>
#include <vector>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/compiler/cpp/names.h>
#include <google/protobuf/compiler/cpp/options.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/compiler/scc.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/dynamic_message.h>
#include <google/protobuf/wire_format.h>
#include <google/protobuf/wire_format_lite.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/stubs/hash.h>
// Must be last.
#include <google/protobuf/port_def.inc>
namespace google {
namespace protobuf {
namespace compiler {
namespace cpp {
namespace {
static const char kAnyMessageName[] = "Any";
static const char kAnyProtoFile[] = "google/protobuf/any.proto";
std::string DotsToColons(const std::string& name) {
return StringReplace(name, ".", "::", true);
}
static const char* const kKeywordList[] = { //
"NULL",
"alignas",
"alignof",
"and",
"and_eq",
"asm",
"auto",
"bitand",
"bitor",
"bool",
"break",
"case",
"catch",
"char",
"class",
"compl",
"const",
"constexpr",
"const_cast",
"continue",
"decltype",
"default",
"delete",
"do",
"double",
"dynamic_cast",
"else",
"enum",
"explicit",
"export",
"extern",
"false",
"float",
"for",
"friend",
"goto",
"if",
"inline",
"int",
"long",
"mutable",
"namespace",
"new",
"noexcept",
"not",
"not_eq",
"nullptr",
"operator",
"or",
"or_eq",
"private",
"protected",
"public",
"register",
"reinterpret_cast",
"return",
"short",
"signed",
"sizeof",
"static",
"static_assert",
"static_cast",
"struct",
"switch",
"template",
"this",
"thread_local",
"throw",
"true",
"try",
"typedef",
"typeid",
"typename",
"union",
"unsigned",
"using",
"virtual",
"void",
"volatile",
"wchar_t",
"while",
"xor",
"xor_eq"};
static std::unordered_set<std::string>* MakeKeywordsMap() {
auto* result = new std::unordered_set<std::string>();
for (const auto keyword : kKeywordList) {
result->emplace(keyword);
}
return result;
}
static std::unordered_set<std::string>& kKeywords = *MakeKeywordsMap();
std::string IntTypeName(const Options& options, const std::string& type) {
return type + "_t";
}
void SetIntVar(const Options& options, const std::string& type,
std::map<std::string, std::string>* variables) {
(*variables)[type] = IntTypeName(options, type);
}
// Returns true if the message can potentially allocate memory for its field.
// This is used to determine if message-owned arena will be useful.
bool AllocExpected(const Descriptor* descriptor) {
return false;
}
// Describes different approaches to detect non-canonical int32 encoding. Only
// kNever or kAlways is eligible for *simple* verification methods.
enum class VerifyInt32Type {
kCustom, // Only check if field number matches.
kNever, // Do not check.
kAlways, // Always check.
};
inline VerifySimpleType VerifyInt32TypeToVerifyCustom(VerifyInt32Type t) {
static VerifySimpleType kCustomTypes[] = {
VerifySimpleType::kCustom, VerifySimpleType::kCustomInt32Never,
VerifySimpleType::kCustomInt32Always};
return kCustomTypes[static_cast<int32_t>(t) -
static_cast<int32_t>(VerifyInt32Type::kCustom)];
}
} // namespace
bool IsLazy(const FieldDescriptor* field, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
return IsLazilyVerifiedLazy(field, options) ||
IsEagerlyVerifiedLazy(field, options, scc_analyzer);
}
// Returns true if "field" is a message field that is backed by LazyField per
// profile (go/pdlazy).
inline bool IsEagerlyVerifiedLazyByProfile(const FieldDescriptor* field,
const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
return false;
}
bool IsEagerlyVerifiedLazy(const FieldDescriptor* field, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
return false;
}
bool IsLazilyVerifiedLazy(const FieldDescriptor* field,
const Options& options) {
return false;
}
void SetCommonVars(const Options& options,
std::map<std::string, std::string>* variables) {
(*variables)["proto_ns"] = ProtobufNamespace(options);
// Warning: there is some clever naming/splitting here to avoid extract script
// rewrites. The names of these variables must not be things that the extract
// script will rewrite. That's why we use "CHK" (for example) instead of
// "GOOGLE_CHECK".
if (options.opensource_runtime) {
(*variables)["GOOGLE_PROTOBUF"] = "GOOGLE_PROTOBUF";
(*variables)["CHK"] = "GOOGLE_CHECK";
(*variables)["DCHK"] = "GOOGLE_DCHECK";
} else {
// These values are things the extract script would rewrite if we did not
// split them. It might not strictly matter since we don't generate google3
// code in open-source. But it's good to prevent surprising things from
// happening.
(*variables)["GOOGLE_PROTOBUF"] =
"GOOGLE3"
"_PROTOBUF";
(*variables)["CHK"] =
"CH"
"ECK";
(*variables)["DCHK"] =
"DCH"
"ECK";
}
SetIntVar(options, "int8", variables);
SetIntVar(options, "uint8", variables);
SetIntVar(options, "uint32", variables);
SetIntVar(options, "uint64", variables);
SetIntVar(options, "int32", variables);
SetIntVar(options, "int64", variables);
(*variables)["string"] = "std::string";
}
void SetCommonMessageDataVariables(
const Descriptor* descriptor,
std::map<std::string, std::string>* variables) {
std::string prefix = IsMapEntryMessage(descriptor) ? "" : "_impl_.";
(*variables)["any_metadata"] = prefix + "_any_metadata_";
(*variables)["cached_size"] = prefix + "_cached_size_";
(*variables)["extensions"] = prefix + "_extensions_";
(*variables)["has_bits"] = prefix + "_has_bits_";
(*variables)["inlined_string_donated_array"] =
prefix + "_inlined_string_donated_";
(*variables)["oneof_case"] = prefix + "_oneof_case_";
(*variables)["tracker"] = "Impl_::_tracker_";
(*variables)["weak_field_map"] = prefix + "_weak_field_map_";
(*variables)["split"] = prefix + "_split_";
(*variables)["cached_split_ptr"] = "cached_split_ptr";
}
void SetUnknownFieldsVariable(const Descriptor* descriptor,
const Options& options,
std::map<std::string, std::string>* variables) {
std::string proto_ns = ProtobufNamespace(options);
std::string unknown_fields_type;
if (UseUnknownFieldSet(descriptor->file(), options)) {
unknown_fields_type = "::" + proto_ns + "::UnknownFieldSet";
(*variables)["unknown_fields"] =
"_internal_metadata_.unknown_fields<" + unknown_fields_type + ">(" +
unknown_fields_type + "::default_instance)";
} else {
unknown_fields_type =
PrimitiveTypeName(options, FieldDescriptor::CPPTYPE_STRING);
(*variables)["unknown_fields"] = "_internal_metadata_.unknown_fields<" +
unknown_fields_type + ">(::" + proto_ns +
"::internal::GetEmptyString)";
}
(*variables)["unknown_fields_type"] = unknown_fields_type;
(*variables)["have_unknown_fields"] =
"_internal_metadata_.have_unknown_fields()";
(*variables)["mutable_unknown_fields"] =
"_internal_metadata_.mutable_unknown_fields<" + unknown_fields_type +
">()";
}
std::string UnderscoresToCamelCase(const std::string& input,
bool cap_next_letter) {
std::string result;
// Note: I distrust ctype.h due to locales.
for (int i = 0; i < input.size(); i++) {
if ('a' <= input[i] && input[i] <= 'z') {
if (cap_next_letter) {
result += input[i] + ('A' - 'a');
} else {
result += input[i];
}
cap_next_letter = false;
} else if ('A' <= input[i] && input[i] <= 'Z') {
// Capital letters are left as-is.
result += input[i];
cap_next_letter = false;
} else if ('0' <= input[i] && input[i] <= '9') {
result += input[i];
cap_next_letter = true;
} else {
cap_next_letter = true;
}
}
return result;
}
const char kThickSeparator[] =
"// ===================================================================\n";
const char kThinSeparator[] =
"// -------------------------------------------------------------------\n";
bool CanInitializeByZeroing(const FieldDescriptor* field) {
if (field->is_repeated() || field->is_extension()) return false;
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_ENUM:
return field->default_value_enum()->number() == 0;
case FieldDescriptor::CPPTYPE_INT32:
return field->default_value_int32() == 0;
case FieldDescriptor::CPPTYPE_INT64:
return field->default_value_int64() == 0;
case FieldDescriptor::CPPTYPE_UINT32:
return field->default_value_uint32() == 0;
case FieldDescriptor::CPPTYPE_UINT64:
return field->default_value_uint64() == 0;
case FieldDescriptor::CPPTYPE_FLOAT:
return field->default_value_float() == 0;
case FieldDescriptor::CPPTYPE_DOUBLE:
return field->default_value_double() == 0;
case FieldDescriptor::CPPTYPE_BOOL:
return field->default_value_bool() == false;
default:
return false;
}
}
std::string ClassName(const Descriptor* descriptor) {
const Descriptor* parent = descriptor->containing_type();
std::string res;
if (parent) res += ClassName(parent) + "_";
res += descriptor->name();
if (IsMapEntryMessage(descriptor)) res += "_DoNotUse";
return ResolveKeyword(res);
}
std::string ClassName(const EnumDescriptor* enum_descriptor) {
if (enum_descriptor->containing_type() == nullptr) {
return ResolveKeyword(enum_descriptor->name());
} else {
return ClassName(enum_descriptor->containing_type()) + "_" +
enum_descriptor->name();
}
}
std::string QualifiedClassName(const Descriptor* d, const Options& options) {
return QualifiedFileLevelSymbol(d->file(), ClassName(d), options);
}
std::string QualifiedClassName(const EnumDescriptor* d,
const Options& options) {
return QualifiedFileLevelSymbol(d->file(), ClassName(d), options);
}
std::string QualifiedClassName(const Descriptor* d) {
return QualifiedClassName(d, Options());
}
std::string QualifiedClassName(const EnumDescriptor* d) {
return QualifiedClassName(d, Options());
}
std::string ExtensionName(const FieldDescriptor* d) {
if (const Descriptor* scope = d->extension_scope())
return StrCat(ClassName(scope), "::", ResolveKeyword(d->name()));
return ResolveKeyword(d->name());
}
std::string QualifiedExtensionName(const FieldDescriptor* d,
const Options& options) {
GOOGLE_DCHECK(d->is_extension());
return QualifiedFileLevelSymbol(d->file(), ExtensionName(d), options);
}
std::string QualifiedExtensionName(const FieldDescriptor* d) {
return QualifiedExtensionName(d, Options());
}
std::string Namespace(const std::string& package) {
if (package.empty()) return "";
return "::" + DotsToColons(package);
}
std::string Namespace(const FileDescriptor* d, const Options& options) {
std::string ret = Namespace(d->package());
if (IsWellKnownMessage(d) && options.opensource_runtime) {
// Written with string concatenation to prevent rewriting of
// ::google::protobuf.
ret = StringReplace(ret,
"::google::"
"protobuf",
"::PROTOBUF_NAMESPACE_ID", false);
}
return ret;
}
std::string Namespace(const Descriptor* d, const Options& options) {
return Namespace(d->file(), options);
}
std::string Namespace(const FieldDescriptor* d, const Options& options) {
return Namespace(d->file(), options);
}
std::string Namespace(const EnumDescriptor* d, const Options& options) {
return Namespace(d->file(), options);
}
std::string DefaultInstanceType(const Descriptor* descriptor,
const Options& /*options*/, bool split) {
return ClassName(descriptor) + (split ? "__Impl_Split" : "") +
"DefaultTypeInternal";
}
std::string DefaultInstanceName(const Descriptor* descriptor,
const Options& /*options*/, bool split) {
return "_" + ClassName(descriptor, false) + (split ? "__Impl_Split" : "") +
"_default_instance_";
}
std::string DefaultInstancePtr(const Descriptor* descriptor,
const Options& options, bool split) {
return DefaultInstanceName(descriptor, options, split) + "ptr_";
}
std::string QualifiedDefaultInstanceName(const Descriptor* descriptor,
const Options& options, bool split) {
return QualifiedFileLevelSymbol(
descriptor->file(), DefaultInstanceName(descriptor, options, split),
options);
}
std::string QualifiedDefaultInstancePtr(const Descriptor* descriptor,
const Options& options, bool split) {
return QualifiedDefaultInstanceName(descriptor, options, split) + "ptr_";
}
std::string DescriptorTableName(const FileDescriptor* file,
const Options& options) {
return UniqueName("descriptor_table", file, options);
}
std::string FileDllExport(const FileDescriptor* file, const Options& options) {
return UniqueName("PROTOBUF_INTERNAL_EXPORT", file, options);
}
std::string SuperClassName(const Descriptor* descriptor,
const Options& options) {
if (!HasDescriptorMethods(descriptor->file(), options)) {
return "::" + ProtobufNamespace(options) + "::MessageLite";
}
auto simple_base = SimpleBaseClass(descriptor, options);
if (simple_base.empty()) {
return "::" + ProtobufNamespace(options) + "::Message";
}
return "::" + ProtobufNamespace(options) + "::internal::" + simple_base;
}
std::string ResolveKeyword(const std::string& name) {
if (kKeywords.count(name) > 0) {
return name + "_";
}
return name;
}
std::string FieldName(const FieldDescriptor* field) {
std::string result = field->name();
LowerString(&result);
if (kKeywords.count(result) > 0) {
result.append("_");
}
return result;
}
std::string FieldMemberName(const FieldDescriptor* field, bool split) {
StringPiece prefix =
IsMapEntryMessage(field->containing_type()) ? "" : "_impl_.";
StringPiece split_prefix = split ? "_split_->" : "";
if (field->real_containing_oneof() == nullptr) {
return StrCat(prefix, split_prefix, FieldName(field), "_");
}
// Oneof fields are never split.
GOOGLE_CHECK(!split);
return StrCat(prefix, field->containing_oneof()->name(), "_.",
FieldName(field), "_");
}
std::string OneofCaseConstantName(const FieldDescriptor* field) {
GOOGLE_DCHECK(field->containing_oneof());
std::string field_name = UnderscoresToCamelCase(field->name(), true);
return "k" + field_name;
}
std::string QualifiedOneofCaseConstantName(const FieldDescriptor* field) {
GOOGLE_DCHECK(field->containing_oneof());
const std::string qualification =
QualifiedClassName(field->containing_type());
return StrCat(qualification, "::", OneofCaseConstantName(field));
}
std::string EnumValueName(const EnumValueDescriptor* enum_value) {
std::string result = enum_value->name();
if (kKeywords.count(result) > 0) {
result.append("_");
}
return result;
}
int EstimateAlignmentSize(const FieldDescriptor* field) {
if (field == nullptr) return 0;
if (field->is_repeated()) return 8;
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_BOOL:
return 1;
case FieldDescriptor::CPPTYPE_INT32:
case FieldDescriptor::CPPTYPE_UINT32:
case FieldDescriptor::CPPTYPE_ENUM:
case FieldDescriptor::CPPTYPE_FLOAT:
return 4;
case FieldDescriptor::CPPTYPE_INT64:
case FieldDescriptor::CPPTYPE_UINT64:
case FieldDescriptor::CPPTYPE_DOUBLE:
case FieldDescriptor::CPPTYPE_STRING:
case FieldDescriptor::CPPTYPE_MESSAGE:
return 8;
}
GOOGLE_LOG(FATAL) << "Can't get here.";
return -1; // Make compiler happy.
}
std::string FieldConstantName(const FieldDescriptor* field) {
std::string field_name = UnderscoresToCamelCase(field->name(), true);
std::string result = "k" + field_name + "FieldNumber";
if (!field->is_extension() &&
field->containing_type()->FindFieldByCamelcaseName(
field->camelcase_name()) != field) {
// This field's camelcase name is not unique. As a hack, add the field
// number to the constant name. This makes the constant rather useless,
// but what can we do?
result += "_" + StrCat(field->number());
}
return result;
}
std::string FieldMessageTypeName(const FieldDescriptor* field,
const Options& options) {
// Note: The Google-internal version of Protocol Buffers uses this function
// as a hook point for hacks to support legacy code.
return QualifiedClassName(field->message_type(), options);
}
std::string StripProto(const std::string& filename) {
/*
* TODO(github/georgthegreat) remove this proxy method
* once Google's internal codebase will become ready
*/
return compiler::StripProto(filename);
}
const char* PrimitiveTypeName(FieldDescriptor::CppType type) {
switch (type) {
case FieldDescriptor::CPPTYPE_INT32:
return "int32_t";
case FieldDescriptor::CPPTYPE_INT64:
return "int64_t";
case FieldDescriptor::CPPTYPE_UINT32:
return "uint32_t";
case FieldDescriptor::CPPTYPE_UINT64:
return "uint64_t";
case FieldDescriptor::CPPTYPE_DOUBLE:
return "double";
case FieldDescriptor::CPPTYPE_FLOAT:
return "float";
case FieldDescriptor::CPPTYPE_BOOL:
return "bool";
case FieldDescriptor::CPPTYPE_ENUM:
return "int";
case FieldDescriptor::CPPTYPE_STRING:
return "std::string";
case FieldDescriptor::CPPTYPE_MESSAGE:
return nullptr;
// No default because we want the compiler to complain if any new
// CppTypes are added.
}
GOOGLE_LOG(FATAL) << "Can't get here.";
return nullptr;
}
std::string PrimitiveTypeName(const Options& options,
FieldDescriptor::CppType type) {
switch (type) {
case FieldDescriptor::CPPTYPE_INT32:
return IntTypeName(options, "int32");
case FieldDescriptor::CPPTYPE_INT64:
return IntTypeName(options, "int64");
case FieldDescriptor::CPPTYPE_UINT32:
return IntTypeName(options, "uint32");
case FieldDescriptor::CPPTYPE_UINT64:
return IntTypeName(options, "uint64");
case FieldDescriptor::CPPTYPE_DOUBLE:
return "double";
case FieldDescriptor::CPPTYPE_FLOAT:
return "float";
case FieldDescriptor::CPPTYPE_BOOL:
return "bool";
case FieldDescriptor::CPPTYPE_ENUM:
return "int";
case FieldDescriptor::CPPTYPE_STRING:
return "std::string";
case FieldDescriptor::CPPTYPE_MESSAGE:
return "";
// No default because we want the compiler to complain if any new
// CppTypes are added.
}
GOOGLE_LOG(FATAL) << "Can't get here.";
return "";
}
const char* DeclaredTypeMethodName(FieldDescriptor::Type type) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
return "Int32";
case FieldDescriptor::TYPE_INT64:
return "Int64";
case FieldDescriptor::TYPE_UINT32:
return "UInt32";
case FieldDescriptor::TYPE_UINT64:
return "UInt64";
case FieldDescriptor::TYPE_SINT32:
return "SInt32";
case FieldDescriptor::TYPE_SINT64:
return "SInt64";
case FieldDescriptor::TYPE_FIXED32:
return "Fixed32";
case FieldDescriptor::TYPE_FIXED64:
return "Fixed64";
case FieldDescriptor::TYPE_SFIXED32:
return "SFixed32";
case FieldDescriptor::TYPE_SFIXED64:
return "SFixed64";
case FieldDescriptor::TYPE_FLOAT:
return "Float";
case FieldDescriptor::TYPE_DOUBLE:
return "Double";
case FieldDescriptor::TYPE_BOOL:
return "Bool";
case FieldDescriptor::TYPE_ENUM:
return "Enum";
case FieldDescriptor::TYPE_STRING:
return "String";
case FieldDescriptor::TYPE_BYTES:
return "Bytes";
case FieldDescriptor::TYPE_GROUP:
return "Group";
case FieldDescriptor::TYPE_MESSAGE:
return "Message";
// No default because we want the compiler to complain if any new
// types are added.
}
GOOGLE_LOG(FATAL) << "Can't get here.";
return "";
}
std::string Int32ToString(int number) {
if (number == std::numeric_limits<int32_t>::min()) {
// This needs to be special-cased, see explanation here:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52661
return StrCat(number + 1, " - 1");
} else {
return StrCat(number);
}
}
static std::string Int64ToString(int64_t number) {
if (number == std::numeric_limits<int64_t>::min()) {
// This needs to be special-cased, see explanation here:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52661
return StrCat("int64_t{", number + 1, "} - 1");
}
return StrCat("int64_t{", number, "}");
}
static std::string UInt64ToString(uint64_t number) {
return StrCat("uint64_t{", number, "u}");
}
std::string DefaultValue(const FieldDescriptor* field) {
return DefaultValue(Options(), field);
}
std::string DefaultValue(const Options& options, const FieldDescriptor* field) {
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
return Int32ToString(field->default_value_int32());
case FieldDescriptor::CPPTYPE_UINT32:
return StrCat(field->default_value_uint32()) + "u";
case FieldDescriptor::CPPTYPE_INT64:
return Int64ToString(field->default_value_int64());
case FieldDescriptor::CPPTYPE_UINT64:
return UInt64ToString(field->default_value_uint64());
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value = field->default_value_double();
if (value == std::numeric_limits<double>::infinity()) {
return "std::numeric_limits<double>::infinity()";
} else if (value == -std::numeric_limits<double>::infinity()) {
return "-std::numeric_limits<double>::infinity()";
} else if (value != value) {
return "std::numeric_limits<double>::quiet_NaN()";
} else {
return SimpleDtoa(value);
}
}
case FieldDescriptor::CPPTYPE_FLOAT: {
float value = field->default_value_float();
if (value == std::numeric_limits<float>::infinity()) {
return "std::numeric_limits<float>::infinity()";
} else if (value == -std::numeric_limits<float>::infinity()) {
return "-std::numeric_limits<float>::infinity()";
} else if (value != value) {
return "std::numeric_limits<float>::quiet_NaN()";
} else {
std::string float_value = SimpleFtoa(value);
// If floating point value contains a period (.) or an exponent
// (either E or e), then append suffix 'f' to make it a float
// literal.
if (float_value.find_first_of(".eE") != std::string::npos) {
float_value.push_back('f');
}
return float_value;
}
}
case FieldDescriptor::CPPTYPE_BOOL:
return field->default_value_bool() ? "true" : "false";
case FieldDescriptor::CPPTYPE_ENUM:
// Lazy: Generate a static_cast because we don't have a helper function
// that constructs the full name of an enum value.
return strings::Substitute(
"static_cast< $0 >($1)", ClassName(field->enum_type(), true),
Int32ToString(field->default_value_enum()->number()));
case FieldDescriptor::CPPTYPE_STRING:
return "\"" +
EscapeTrigraphs(CEscape(field->default_value_string())) +
"\"";
case FieldDescriptor::CPPTYPE_MESSAGE:
return "*" + FieldMessageTypeName(field, options) +
"::internal_default_instance()";
}
// Can't actually get here; make compiler happy. (We could add a default
// case above but then we wouldn't get the nice compiler warning when a
// new type is added.)
GOOGLE_LOG(FATAL) << "Can't get here.";
return "";
}
// Convert a file name into a valid identifier.
std::string FilenameIdentifier(const std::string& filename) {
std::string result;
for (int i = 0; i < filename.size(); i++) {
if (ascii_isalnum(filename[i])) {
result.push_back(filename[i]);
} else {
// Not alphanumeric. To avoid any possibility of name conflicts we
// use the hex code for the character.
StrAppend(&result, "_",
strings::Hex(static_cast<uint8_t>(filename[i])));
}
}
return result;
}
std::string UniqueName(const std::string& name, const std::string& filename,
const Options& options) {
return name + "_" + FilenameIdentifier(filename);
}
// Return the qualified C++ name for a file level symbol.
std::string QualifiedFileLevelSymbol(const FileDescriptor* file,
const std::string& name,
const Options& options) {
if (file->package().empty()) {
return StrCat("::", name);
}
return StrCat(Namespace(file, options), "::", name);
}
// Escape C++ trigraphs by escaping question marks to \?
std::string EscapeTrigraphs(const std::string& to_escape) {
return StringReplace(to_escape, "?", "\\?", true);
}
// Escaped function name to eliminate naming conflict.
std::string SafeFunctionName(const Descriptor* descriptor,
const FieldDescriptor* field,
const std::string& prefix) {
// Do not use FieldName() since it will escape keywords.
std::string name = field->name();
LowerString(&name);
std::string function_name = prefix + name;
if (descriptor->FindFieldByName(function_name)) {
// Single underscore will also make it conflicting with the private data
// member. We use double underscore to escape function names.
function_name.append("__");
} else if (kKeywords.count(name) > 0) {
// If the field name is a keyword, we append the underscore back to keep it
// consistent with other function names.
function_name.append("_");
}
return function_name;
}
bool IsStringInlined(const FieldDescriptor* descriptor,
const Options& options) {
(void)descriptor;
(void)options;
return false;
}
static bool HasLazyFields(const Descriptor* descriptor, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
for (int field_idx = 0; field_idx < descriptor->field_count(); field_idx++) {
if (IsLazy(descriptor->field(field_idx), options, scc_analyzer)) {
return true;
}
}
for (int idx = 0; idx < descriptor->extension_count(); idx++) {
if (IsLazy(descriptor->extension(idx), options, scc_analyzer)) {
return true;
}
}
for (int idx = 0; idx < descriptor->nested_type_count(); idx++) {
if (HasLazyFields(descriptor->nested_type(idx), options, scc_analyzer)) {
return true;
}
}
return false;
}
// Does the given FileDescriptor use lazy fields?
bool HasLazyFields(const FileDescriptor* file, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
for (int i = 0; i < file->message_type_count(); i++) {
const Descriptor* descriptor(file->message_type(i));
if (HasLazyFields(descriptor, options, scc_analyzer)) {
return true;
}
}
for (int field_idx = 0; field_idx < file->extension_count(); field_idx++) {
if (IsLazy(file->extension(field_idx), options, scc_analyzer)) {
return true;
}
}
return false;
}
bool ShouldSplit(const Descriptor*, const Options&) { return false; }
bool ShouldSplit(const FieldDescriptor*, const Options&) { return false; }
static bool HasRepeatedFields(const Descriptor* descriptor) {
for (int i = 0; i < descriptor->field_count(); ++i) {
if (descriptor->field(i)->label() == FieldDescriptor::LABEL_REPEATED) {
return true;
}
}
for (int i = 0; i < descriptor->nested_type_count(); ++i) {
if (HasRepeatedFields(descriptor->nested_type(i))) return true;
}
return false;
}
bool HasRepeatedFields(const FileDescriptor* file) {
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasRepeatedFields(file->message_type(i))) return true;
}
return false;
}
static bool IsStringPieceField(const FieldDescriptor* field,
const Options& options) {
return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
EffectiveStringCType(field, options) == FieldOptions::STRING_PIECE;
}
static bool HasStringPieceFields(const Descriptor* descriptor,
const Options& options) {
for (int i = 0; i < descriptor->field_count(); ++i) {
if (IsStringPieceField(descriptor->field(i), options)) return true;
}
for (int i = 0; i < descriptor->nested_type_count(); ++i) {
if (HasStringPieceFields(descriptor->nested_type(i), options)) return true;
}
return false;
}
bool HasStringPieceFields(const FileDescriptor* file, const Options& options) {
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasStringPieceFields(file->message_type(i), options)) return true;
}
return false;
}
static bool IsCordField(const FieldDescriptor* field, const Options& options) {
return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
EffectiveStringCType(field, options) == FieldOptions::CORD;
}
static bool HasCordFields(const Descriptor* descriptor,
const Options& options) {
for (int i = 0; i < descriptor->field_count(); ++i) {
if (IsCordField(descriptor->field(i), options)) return true;
}
for (int i = 0; i < descriptor->nested_type_count(); ++i) {
if (HasCordFields(descriptor->nested_type(i), options)) return true;
}
return false;
}
bool HasCordFields(const FileDescriptor* file, const Options& options) {
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasCordFields(file->message_type(i), options)) return true;
}
return false;
}
static bool HasExtensionsOrExtendableMessage(const Descriptor* descriptor) {
if (descriptor->extension_range_count() > 0) return true;
if (descriptor->extension_count() > 0) return true;
for (int i = 0; i < descriptor->nested_type_count(); ++i) {
if (HasExtensionsOrExtendableMessage(descriptor->nested_type(i))) {
return true;
}
}
return false;
}
bool HasExtensionsOrExtendableMessage(const FileDescriptor* file) {
if (file->extension_count() > 0) return true;
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasExtensionsOrExtendableMessage(file->message_type(i))) return true;
}
return false;
}
static bool HasMapFields(const Descriptor* descriptor) {
for (int i = 0; i < descriptor->field_count(); ++i) {
if (descriptor->field(i)->is_map()) {
return true;
}
}
for (int i = 0; i < descriptor->nested_type_count(); ++i) {
if (HasMapFields(descriptor->nested_type(i))) return true;
}
return false;
}
bool HasMapFields(const FileDescriptor* file) {
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasMapFields(file->message_type(i))) return true;
}
return false;
}
static bool HasEnumDefinitions(const Descriptor* message_type) {
if (message_type->enum_type_count() > 0) return true;
for (int i = 0; i < message_type->nested_type_count(); ++i) {
if (HasEnumDefinitions(message_type->nested_type(i))) return true;
}
return false;
}
bool HasEnumDefinitions(const FileDescriptor* file) {
if (file->enum_type_count() > 0) return true;
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasEnumDefinitions(file->message_type(i))) return true;
}
return false;
}
bool ShouldVerify(const Descriptor* descriptor, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
(void)descriptor;
(void)options;
(void)scc_analyzer;
return false;
}
bool ShouldVerify(const FileDescriptor* file, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
(void)file;
(void)options;
(void)scc_analyzer;
return false;
}
bool IsUtf8String(const FieldDescriptor* field) {
return IsProto3(field->file()) &&
field->type() == FieldDescriptor::TYPE_STRING;
}
VerifySimpleType ShouldVerifySimple(const Descriptor* descriptor) {
(void)descriptor;
return VerifySimpleType::kCustom;
}
bool IsStringOrMessage(const FieldDescriptor* field) {
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
case FieldDescriptor::CPPTYPE_INT64:
case FieldDescriptor::CPPTYPE_UINT32:
case FieldDescriptor::CPPTYPE_UINT64:
case FieldDescriptor::CPPTYPE_DOUBLE:
case FieldDescriptor::CPPTYPE_FLOAT:
case FieldDescriptor::CPPTYPE_BOOL:
case FieldDescriptor::CPPTYPE_ENUM:
return false;
case FieldDescriptor::CPPTYPE_STRING:
case FieldDescriptor::CPPTYPE_MESSAGE:
return true;
}
GOOGLE_LOG(FATAL) << "Can't get here.";
return false;
}
FieldOptions::CType EffectiveStringCType(const FieldDescriptor* field,
const Options& options) {
GOOGLE_DCHECK(field->cpp_type() == FieldDescriptor::CPPTYPE_STRING);
if (options.opensource_runtime) {
// Open-source protobuf release only supports STRING ctype.
return FieldOptions::STRING;
} else {
// Google-internal supports all ctypes.
return field->options().ctype();
}
}
bool IsAnyMessage(const FileDescriptor* descriptor, const Options& options) {
return descriptor->name() == kAnyProtoFile;
}
bool IsAnyMessage(const Descriptor* descriptor, const Options& options) {
return descriptor->name() == kAnyMessageName &&
IsAnyMessage(descriptor->file(), options);
}
bool IsWellKnownMessage(const FileDescriptor* file) {
static const std::unordered_set<std::string> well_known_files{
"google/protobuf/any.proto",
"google/protobuf/api.proto",
"google/protobuf/compiler/plugin.proto",
"google/protobuf/descriptor.proto",
"google/protobuf/duration.proto",
"google/protobuf/empty.proto",
"google/protobuf/field_mask.proto",
"google/protobuf/source_context.proto",
"google/protobuf/struct.proto",
"google/protobuf/timestamp.proto",
"google/protobuf/type.proto",
"google/protobuf/wrappers.proto",
};
return well_known_files.find(file->name()) != well_known_files.end();
}
static bool FieldEnforceUtf8(const FieldDescriptor* field,
const Options& options) {
return true;
}
static bool FileUtf8Verification(const FileDescriptor* file,
const Options& options) {
return true;
}
// Which level of UTF-8 enforcemant is placed on this file.
Utf8CheckMode GetUtf8CheckMode(const FieldDescriptor* field,
const Options& options) {
if (field->file()->syntax() == FileDescriptor::SYNTAX_PROTO3 &&
FieldEnforceUtf8(field, options)) {
return Utf8CheckMode::kStrict;
} else if (GetOptimizeFor(field->file(), options) !=
FileOptions::LITE_RUNTIME &&
FileUtf8Verification(field->file(), options)) {
return Utf8CheckMode::kVerify;
} else {
return Utf8CheckMode::kNone;
}
}
static void GenerateUtf8CheckCode(const FieldDescriptor* field,
const Options& options, bool for_parse,
const char* parameters,
const char* strict_function,
const char* verify_function,
const Formatter& format) {
switch (GetUtf8CheckMode(field, options)) {
case Utf8CheckMode::kStrict: {
if (for_parse) {
format("DO_(");
}
format("::$proto_ns$::internal::WireFormatLite::$1$(\n", strict_function);
format.Indent();
format(parameters);
if (for_parse) {
format("::$proto_ns$::internal::WireFormatLite::PARSE,\n");
} else {
format("::$proto_ns$::internal::WireFormatLite::SERIALIZE,\n");
}
format("\"$1$\")", field->full_name());
if (for_parse) {
format(")");
}
format(";\n");
format.Outdent();
break;
}
case Utf8CheckMode::kVerify: {
format("::$proto_ns$::internal::WireFormat::$1$(\n", verify_function);
format.Indent();
format(parameters);
if (for_parse) {
format("::$proto_ns$::internal::WireFormat::PARSE,\n");
} else {
format("::$proto_ns$::internal::WireFormat::SERIALIZE,\n");
}
format("\"$1$\");\n", field->full_name());
format.Outdent();
break;
}
case Utf8CheckMode::kNone:
break;
}
}
void GenerateUtf8CheckCodeForString(const FieldDescriptor* field,
const Options& options, bool for_parse,
const char* parameters,
const Formatter& format) {
GenerateUtf8CheckCode(field, options, for_parse, parameters,
"VerifyUtf8String", "VerifyUTF8StringNamedField",
format);
}
void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field,
const Options& options, bool for_parse,
const char* parameters,
const Formatter& format) {
GenerateUtf8CheckCode(field, options, for_parse, parameters, "VerifyUtf8Cord",
"VerifyUTF8CordNamedField", format);
}
void FlattenMessagesInFile(const FileDescriptor* file,
std::vector<const Descriptor*>* result) {
for (int i = 0; i < file->message_type_count(); i++) {
ForEachMessage(file->message_type(i), [&](const Descriptor* descriptor) {
result->push_back(descriptor);
});
}
}
bool HasWeakFields(const Descriptor* descriptor, const Options& options) {
for (int i = 0; i < descriptor->field_count(); i++) {
if (IsWeak(descriptor->field(i), options)) return true;
}
return false;
}
bool HasWeakFields(const FileDescriptor* file, const Options& options) {
for (int i = 0; i < file->message_type_count(); ++i) {
if (HasWeakFields(file->message_type(i), options)) return true;
}
return false;
}
bool UsingImplicitWeakFields(const FileDescriptor* file,
const Options& options) {
return options.lite_implicit_weak_fields &&
GetOptimizeFor(file, options) == FileOptions::LITE_RUNTIME;
}
bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
return UsingImplicitWeakFields(field->file(), options) &&
field->type() == FieldDescriptor::TYPE_MESSAGE &&
!field->is_required() && !field->is_map() && !field->is_extension() &&
!IsWellKnownMessage(field->message_type()->file()) &&
field->message_type()->file()->name() !=
"net/proto2/proto/descriptor.proto" &&
// We do not support implicit weak fields between messages in the same
// strongly-connected component.
scc_analyzer->GetSCC(field->containing_type()) !=
scc_analyzer->GetSCC(field->message_type());
}
MessageAnalysis MessageSCCAnalyzer::GetSCCAnalysis(const SCC* scc) {
if (analysis_cache_.count(scc)) return analysis_cache_[scc];
MessageAnalysis result;
if (UsingImplicitWeakFields(scc->GetFile(), options_)) {
result.contains_weak = true;
}
for (int i = 0; i < scc->descriptors.size(); i++) {
const Descriptor* descriptor = scc->descriptors[i];
if (descriptor->extension_range_count() > 0) {
result.contains_extension = true;
}
for (int j = 0; j < descriptor->field_count(); j++) {
const FieldDescriptor* field = descriptor->field(j);
if (field->is_required()) {
result.contains_required = true;
}
if (field->options().weak()) {
result.contains_weak = true;
}
switch (field->type()) {
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES: {
if (field->options().ctype() == FieldOptions::CORD) {
result.contains_cord = true;
}
break;
}
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_MESSAGE: {
const SCC* child = analyzer_.GetSCC(field->message_type());
if (child != scc) {
MessageAnalysis analysis = GetSCCAnalysis(child);
result.contains_cord |= analysis.contains_cord;
result.contains_extension |= analysis.contains_extension;
if (!ShouldIgnoreRequiredFieldCheck(field, options_)) {
result.contains_required |= analysis.contains_required;
}
result.contains_weak |= analysis.contains_weak;
} else {
// This field points back into the same SCC hence the messages
// in the SCC are recursive. Note if SCC contains more than two
// nodes it has to be recursive, however this test also works for
// a single node that is recursive.
result.is_recursive = true;
}
break;
}
default:
break;
}
}
}
// We deliberately only insert the result here. After we contracted the SCC
// in the graph, the graph should be a DAG. Hence we shouldn't need to mark
// nodes visited as we can never return to them. By inserting them here
// we will go in an infinite loop if the SCC is not correct.
return analysis_cache_[scc] = result;
}
void ListAllFields(const Descriptor* d,
std::vector<const FieldDescriptor*>* fields) {
// Collect sub messages
for (int i = 0; i < d->nested_type_count(); i++) {
ListAllFields(d->nested_type(i), fields);
}
// Collect message level extensions.
for (int i = 0; i < d->extension_count(); i++) {
fields->push_back(d->extension(i));
}
// Add types of fields necessary
for (int i = 0; i < d->field_count(); i++) {
fields->push_back(d->field(i));
}
}
void ListAllFields(const FileDescriptor* d,
std::vector<const FieldDescriptor*>* fields) {
// Collect file level message.
for (int i = 0; i < d->message_type_count(); i++) {
ListAllFields(d->message_type(i), fields);
}
// Collect message level extensions.
for (int i = 0; i < d->extension_count(); i++) {
fields->push_back(d->extension(i));
}
}
void ListAllTypesForServices(const FileDescriptor* fd,
std::vector<const Descriptor*>* types) {
for (int i = 0; i < fd->service_count(); i++) {
const ServiceDescriptor* sd = fd->service(i);
for (int j = 0; j < sd->method_count(); j++) {
const MethodDescriptor* method = sd->method(j);
types->push_back(method->input_type());
types->push_back(method->output_type());
}
}
}
bool GetBootstrapBasename(const Options& options, const std::string& basename,
std::string* bootstrap_basename) {
if (options.opensource_runtime) {
return false;
}
std::unordered_map<std::string, std::string> bootstrap_mapping{
{"net/proto2/proto/descriptor",
"third_party/protobuf/descriptor"},
{"net/proto2/compiler/proto/plugin",
"net/proto2/compiler/proto/plugin"},
{"net/proto2/compiler/proto/profile",
"net/proto2/compiler/proto/profile_bootstrap"},
};
auto iter = bootstrap_mapping.find(basename);
if (iter == bootstrap_mapping.end()) {
*bootstrap_basename = basename;
return false;
} else {
*bootstrap_basename = iter->second;
return true;
}
}
bool IsBootstrapProto(const Options& options, const FileDescriptor* file) {
std::string my_name = StripProto(file->name());
return GetBootstrapBasename(options, my_name, &my_name);
}
bool MaybeBootstrap(const Options& options, GeneratorContext* generator_context,
bool bootstrap_flag, std::string* basename) {
std::string bootstrap_basename;
if (!GetBootstrapBasename(options, *basename, &bootstrap_basename)) {
return false;
}
if (bootstrap_flag) {
// Adjust basename, but don't abort code generation.
*basename = bootstrap_basename;
return false;
} else {
const std::string& forward_to_basename = bootstrap_basename;
// Generate forwarding headers and empty .pb.cc.
{
std::unique_ptr<io::ZeroCopyOutputStream> output(
generator_context->Open(*basename + ".pb.h"));
io::Printer printer(output.get(), '$', nullptr);
printer.Print(
"#ifndef PROTOBUF_INCLUDED_$filename_identifier$_FORWARD_PB_H\n"
"#define PROTOBUF_INCLUDED_$filename_identifier$_FORWARD_PB_H\n"
"#include \"$forward_to_basename$.pb.h\" // IWYU pragma: export\n"
"#endif // PROTOBUF_INCLUDED_$filename_identifier$_FORWARD_PB_H\n",
"forward_to_basename", forward_to_basename, "filename_identifier",
FilenameIdentifier(*basename));
if (!options.opensource_runtime) {
// HACK HACK HACK, tech debt from the deeps of proto1 and SWIG
// protocoltype is SWIG'ed and we need to forward
if (*basename == "net/proto/protocoltype") {
printer.Print(
"#ifdef SWIG\n"
"%include \"$forward_to_basename$.pb.h\"\n"
"#endif // SWIG\n",
"forward_to_basename", forward_to_basename);
}
}
}
{
std::unique_ptr<io::ZeroCopyOutputStream> output(
generator_context->Open(*basename + ".proto.h"));
io::Printer printer(output.get(), '$', nullptr);
printer.Print(
"#ifndef PROTOBUF_INCLUDED_$filename_identifier$_FORWARD_PROTO_H\n"
"#define PROTOBUF_INCLUDED_$filename_identifier$_FORWARD_PROTO_H\n"
"#include \"$forward_to_basename$.proto.h\" // IWYU pragma: "
"export\n"
"#endif // "
"PROTOBUF_INCLUDED_$filename_identifier$_FORWARD_PROTO_H\n",
"forward_to_basename", forward_to_basename, "filename_identifier",
FilenameIdentifier(*basename));
}
{
std::unique_ptr<io::ZeroCopyOutputStream> output(
generator_context->Open(*basename + ".pb.cc"));
io::Printer printer(output.get(), '$', nullptr);
printer.Print("\n");
}
{
std::unique_ptr<io::ZeroCopyOutputStream> output(
generator_context->Open(*basename + ".pb.h.meta"));
}
{
std::unique_ptr<io::ZeroCopyOutputStream> output(
generator_context->Open(*basename + ".proto.h.meta"));
}
// Abort code generation.
return true;
}
}
static bool HasExtensionFromFile(const Message& msg, const FileDescriptor* file,
const Options& options,
bool* has_opt_codesize_extension) {
std::vector<const FieldDescriptor*> fields;
auto reflection = msg.GetReflection();
reflection->ListFields(msg, &fields);
for (auto field : fields) {
const auto* field_msg = field->message_type();
if (field_msg == nullptr) {
// It so happens that enums Is_Valid are still generated so enums work.
// Only messages have potential problems.
continue;
}
// If this option has an extension set AND that extension is defined in the
// same file we have bootstrap problem.
if (field->is_extension()) {
const auto* msg_extension_file = field->message_type()->file();
if (msg_extension_file == file) return true;
if (has_opt_codesize_extension &&
GetOptimizeFor(msg_extension_file, options) ==
FileOptions::CODE_SIZE) {
*has_opt_codesize_extension = true;
}
}
// Recurse in this field to see if there is a problem in there
if (field->is_repeated()) {
for (int i = 0; i < reflection->FieldSize(msg, field); i++) {
if (HasExtensionFromFile(reflection->GetRepeatedMessage(msg, field, i),
file, options, has_opt_codesize_extension)) {
return true;
}
}
} else {
if (HasExtensionFromFile(reflection->GetMessage(msg, field), file,
options, has_opt_codesize_extension)) {
return true;
}
}
}
return false;
}
static bool HasBootstrapProblem(const FileDescriptor* file,
const Options& options,
bool* has_opt_codesize_extension) {
static auto& cache = *new std::unordered_map<const FileDescriptor*, bool>;
auto it = cache.find(file);
if (it != cache.end()) return it->second;
// In order to build the data structures for the reflective parse, it needs
// to parse the serialized descriptor describing all the messages defined in
// this file. Obviously this presents a bootstrap problem for descriptor
// messages.
if (file->name() == "net/proto2/proto/descriptor.proto" ||
file->name() == "google/protobuf/descriptor.proto") {
return true;
}
// Unfortunately we're not done yet. The descriptor option messages allow
// for extensions. So we need to be able to parse these extensions in order
// to parse the file descriptor for a file that has custom options. This is a
// problem when these custom options extensions are defined in the same file.
FileDescriptorProto linkedin_fd_proto;
const DescriptorPool* pool = file->pool();
const Descriptor* fd_proto_descriptor =
pool->FindMessageTypeByName(linkedin_fd_proto.GetTypeName());
// Not all pools have descriptor.proto in them. In these cases there for sure
// are no custom options.
if (fd_proto_descriptor == nullptr) return false;
// It's easier to inspect file as a proto, because we can use reflection on
// the proto to iterate over all content.
file->CopyTo(&linkedin_fd_proto);
// linkedin_fd_proto is a generated proto linked in the proto compiler. As
// such it doesn't know the extensions that are potentially present in the
// descriptor pool constructed from the protos that are being compiled. These
// custom options are therefore in the unknown fields.
// By building the corresponding FileDescriptorProto in the pool constructed
// by the protos that are being compiled, ie. file's pool, the unknown fields
// are converted to extensions.
DynamicMessageFactory factory(pool);
Message* fd_proto = factory.GetPrototype(fd_proto_descriptor)->New();
fd_proto->ParseFromString(linkedin_fd_proto.SerializeAsString());
bool& res = cache[file];
res = HasExtensionFromFile(*fd_proto, file, options,
has_opt_codesize_extension);
delete fd_proto;
return res;
}
FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
const Options& options,
bool* has_opt_codesize_extension) {
if (has_opt_codesize_extension) *has_opt_codesize_extension = false;
switch (options.enforce_mode) {
case EnforceOptimizeMode::kSpeed:
return FileOptions::SPEED;
case EnforceOptimizeMode::kLiteRuntime:
return FileOptions::LITE_RUNTIME;
case EnforceOptimizeMode::kCodeSize:
if (file->options().optimize_for() == FileOptions::LITE_RUNTIME) {
return FileOptions::LITE_RUNTIME;
}
if (HasBootstrapProblem(file, options, has_opt_codesize_extension)) {
return FileOptions::SPEED;
}
return FileOptions::CODE_SIZE;
case EnforceOptimizeMode::kNoEnforcement:
if (file->options().optimize_for() == FileOptions::CODE_SIZE) {
if (HasBootstrapProblem(file, options, has_opt_codesize_extension)) {
GOOGLE_LOG(WARNING) << "Proto states optimize_for = CODE_SIZE, but we "
"cannot honor that because it contains custom option "
"extensions defined in the same proto.";
return FileOptions::SPEED;
}
}
return file->options().optimize_for();
}
GOOGLE_LOG(FATAL) << "Unknown optimization enforcement requested.";
// The phony return below serves to silence a warning from GCC 8.
return FileOptions::SPEED;
}
inline bool IsMessageOwnedArenaEligible(const Descriptor* desc,
const Options& options) {
return GetOptimizeFor(desc->file(), options) != FileOptions::LITE_RUNTIME &&
!options.bootstrap && !options.opensource_runtime &&
AllocExpected(desc);
}
bool EnableMessageOwnedArena(const Descriptor* desc, const Options& options) {
(void)desc;
(void)options;
return false;
}
bool EnableMessageOwnedArenaTrial(const Descriptor* desc,
const Options& options) {
return false;
}
bool HasMessageFieldOrExtension(const Descriptor* desc) {
if (desc->extension_range_count() > 0) return true;
for (const auto* f : FieldRange(desc)) {
if (f->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) return true;
}
return false;
}
} // namespace cpp
} // namespace compiler
} // namespace protobuf
} // namespace google