blob: b48c2ee8544d1c900a5491d1a73612b6a3e5c9eb [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// -*- mode: C++ -*-
//
// Copyright 2022-2023 Google LLC
//
// Licensed under the Apache License v2.0 with LLVM Exceptions (the
// "License"); you may not use this file except in compliance with the
// License. You may obtain a copy of the License at
//
// https://llvm.org/LICENSE.txt
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: Giuliano Procida
#include "unification.h"
#include <cstddef>
#include <utility>
#include "graph.h"
namespace stg {
namespace {
// Type Unification
//
// This is very similar to Equals. The differences are the recursion control,
// caching and handling of StructUnion and Enum nodes.
//
// During unification, keep track of which pairs of types need to be equal, but
// do not add them immediately to the unification substitutions. The caller can
// do that if the whole unification succeeds.
//
// A declaration and definition of the same named type can be unified. This is
// forward declaration resolution.
struct Unifier {
enum Winner { Neither, Right, Left }; // makes p ? Right : Neither a no-op
Unifier(const Graph& graph, Unification& unification)
: graph(graph), unification(unification) {}
bool operator()(Id id1, Id id2) {
Id fid1 = Find(id1);
Id fid2 = Find(id2);
if (fid1 == fid2) {
return true;
}
// Check if the comparison has an already known result.
//
// Opportunistic as seen is unaware of new mappings.
if (!seen.emplace(fid1, fid2).second) {
return true;
}
const auto winner = graph.Apply2<Winner>(*this, fid1, fid2);
if (winner == Neither) {
return false;
}
// These will occasionally get substituted due to a recursive call.
fid1 = Find(fid1);
fid2 = Find(fid2);
if (fid1 == fid2) {
return true;
}
if (winner == Left) {
std::swap(fid1, fid2);
}
mapping.insert({fid1, fid2});
return true;
}
bool operator()(const std::vector<Id>& ids1, const std::vector<Id>& ids2) {
bool result = ids1.size() == ids2.size();
for (size_t ix = 0; result && ix < ids1.size(); ++ix) {
result = (*this)(ids1[ix], ids2[ix]);
}
return result;
}
template <typename Key>
bool operator()(const std::map<Key, Id>& ids1,
const std::map<Key, Id>& ids2) {
bool result = ids1.size() == ids2.size();
auto it1 = ids1.begin();
auto it2 = ids2.begin();
const auto end1 = ids1.end();
const auto end2 = ids2.end();
while (result && it1 != end1 && it2 != end2) {
result = it1->first == it2->first
&& (*this)(it1->second, it2->second);
++it1;
++it2;
}
return result && it1 == end1 && it2 == end2;
}
Winner operator()(const Special& x1, const Special& x2) {
return x1.kind == x2.kind
? Right : Neither;
}
Winner operator()(const PointerReference& x1,
const PointerReference& x2) {
return x1.kind == x2.kind
&& (*this)(x1.pointee_type_id, x2.pointee_type_id)
? Right : Neither;
}
Winner operator()(const PointerToMember& x1, const PointerToMember& x2) {
return (*this)(x1.containing_type_id, x2.containing_type_id)
&& (*this)(x1.pointee_type_id, x2.pointee_type_id)
? Right : Neither;
}
Winner operator()(const Typedef& x1, const Typedef& x2) {
return x1.name == x2.name
&& (*this)(x1.referred_type_id, x2.referred_type_id)
? Right : Neither;
}
Winner operator()(const Qualified& x1, const Qualified& x2) {
return x1.qualifier == x2.qualifier
&& (*this)(x1.qualified_type_id, x2.qualified_type_id)
? Right : Neither;
}
Winner operator()(const Primitive& x1, const Primitive& x2) {
return x1.name == x2.name
&& x1.encoding == x2.encoding
&& x1.bytesize == x2.bytesize
? Right : Neither;
}
Winner operator()(const Array& x1, const Array& x2) {
return x1.number_of_elements == x2.number_of_elements
&& (*this)(x1.element_type_id, x2.element_type_id)
? Right : Neither;
}
Winner operator()(const BaseClass& x1, const BaseClass& x2) {
return x1.offset == x2.offset
&& x1.inheritance == x2.inheritance
&& (*this)(x1.type_id, x2.type_id)
? Right : Neither;
}
Winner operator()(const Method& x1, const Method& x2) {
return x1.mangled_name == x2.mangled_name
&& x1.name == x2.name
&& x1.vtable_offset == x2.vtable_offset
&& (*this)(x1.type_id, x2.type_id)
? Right : Neither;
}
Winner operator()(const Member& x1, const Member& x2) {
return x1.name == x2.name
&& x1.offset == x2.offset
&& x1.bitsize == x2.bitsize
&& (*this)(x1.type_id, x2.type_id)
? Right : Neither;
}
Winner operator()(const StructUnion& x1, const StructUnion& x2) {
const auto& definition1 = x1.definition;
const auto& definition2 = x2.definition;
bool result = x1.kind == x2.kind
&& x1.name == x2.name;
// allow mismatches as forward declarations are always unifiable
if (result && definition1.has_value() && definition2.has_value()) {
result = definition1->bytesize == definition2->bytesize
&& (*this)(definition1->base_classes, definition2->base_classes)
&& (*this)(definition1->methods, definition2->methods)
&& (*this)(definition1->members, definition2->members);
}
return result ? definition2.has_value() ? Right : Left : Neither;
}
Winner operator()(const Enumeration& x1, const Enumeration& x2) {
const auto& definition1 = x1.definition;
const auto& definition2 = x2.definition;
bool result = x1.name == x2.name;
// allow mismatches as forward declarations are always unifiable
if (result && definition1.has_value() && definition2.has_value()) {
result = (*this)(definition1->underlying_type_id,
definition2->underlying_type_id)
&& definition1->enumerators == definition2->enumerators;
}
return result ? definition2.has_value() ? Right : Left : Neither;
}
Winner operator()(const Function& x1, const Function& x2) {
return (*this)(x1.parameters, x2.parameters)
&& (*this)(x1.return_type_id, x2.return_type_id)
? Right : Neither;
}
Winner operator()(const ElfSymbol& x1, const ElfSymbol& x2) {
bool result = x1.symbol_name == x2.symbol_name
&& x1.version_info == x2.version_info
&& x1.is_defined == x2.is_defined
&& x1.symbol_type == x2.symbol_type
&& x1.binding == x2.binding
&& x1.visibility == x2.visibility
&& x1.crc == x2.crc
&& x1.ns == x2.ns
&& x1.full_name == x2.full_name
&& x1.type_id.has_value() == x2.type_id.has_value();
if (result && x1.type_id.has_value()) {
result = (*this)(x1.type_id.value(), x2.type_id.value());
}
return result ? Right : Neither;
}
Winner operator()(const Interface& x1, const Interface& x2) {
return (*this)(x1.symbols, x2.symbols)
&& (*this)(x1.types, x2.types)
? Right : Neither;
}
Winner Mismatch() {
return Neither;
}
Id Find(Id id) {
while (true) {
id = unification.Find(id);
auto it = mapping.find(id);
if (it != mapping.end()) {
id = it->second;
continue;
}
return id;
}
}
const Graph& graph;
Unification& unification;
std::unordered_set<Pair> seen;
std::unordered_map<Id, Id> mapping;
};
} // namespace
bool Unification::Unify(Id id1, Id id2) {
// TODO: Unifier only needs access to Unification::Find
Unifier unifier(graph_, *this);
if (unifier(id1, id2)) {
// commit
for (const auto& s : unifier.mapping) {
Union(s.first, s.second);
}
return true;
}
return false;
}
} // namespace stg