blob: 030f89aa1fbf75300c0fd5cd80a8cff1b1f3678a [file] [log] [blame]
/*
* Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "hal_hw_headers.h"
#include "dp_types.h"
#include "dp_rx.h"
#include "dp_peer.h"
#include "hal_api.h"
#include "qdf_trace.h"
#include "qdf_nbuf.h"
#include "dp_internal.h"
#include "dp_rx_defrag.h"
#include <enet.h> /* LLC_SNAP_HDR_LEN */
#include "dp_rx_defrag.h"
#include "dp_ipa.h"
const struct dp_rx_defrag_cipher dp_f_ccmp = {
"AES-CCM",
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
IEEE80211_WEP_MICLEN,
0,
};
const struct dp_rx_defrag_cipher dp_f_tkip = {
"TKIP",
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
IEEE80211_WEP_CRCLEN,
IEEE80211_WEP_MICLEN,
};
const struct dp_rx_defrag_cipher dp_f_wep = {
"WEP",
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
IEEE80211_WEP_CRCLEN,
0,
};
/*
* dp_rx_defrag_frames_free(): Free fragment chain
* @frames: Fragment chain
*
* Iterates through the fragment chain and frees them
* Returns: None
*/
static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
{
qdf_nbuf_t next, frag = frames;
while (frag) {
next = qdf_nbuf_next(frag);
qdf_nbuf_free(frag);
frag = next;
}
}
/*
* dp_rx_clear_saved_desc_info(): Clears descriptor info
* @peer: Pointer to the peer data structure
* @tid: Transmit ID (TID)
*
* Saves MPDU descriptor info and MSDU link pointer from REO
* ring descriptor. The cache is created per peer, per TID
*
* Returns: None
*/
static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
{
if (peer->rx_tid[tid].dst_ring_desc)
qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
peer->rx_tid[tid].dst_ring_desc = NULL;
peer->rx_tid[tid].head_frag_desc = NULL;
}
static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
unsigned int tid)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
union dp_rx_desc_list_elem_t *head = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
pdev = peer->vdev->pdev;
soc = pdev->soc;
if (peer->rx_tid[tid].head_frag_desc) {
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
dp_rx_add_to_free_desc_list(&head, &tail,
peer->rx_tid[tid].head_frag_desc);
dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
1, &head, &tail);
}
if (peer->rx_tid[tid].dst_ring_desc) {
if (dp_rx_link_desc_return(soc,
peer->rx_tid[tid].dst_ring_desc,
HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
QDF_STATUS_SUCCESS)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Failed to return link desc", __func__);
}
}
/*
* dp_rx_reorder_flush_frag(): Flush the frag list
* @peer: Pointer to the peer data structure
* @tid: Transmit ID (TID)
*
* Flush the per-TID frag list
*
* Returns: None
*/
void dp_rx_reorder_flush_frag(struct dp_peer *peer,
unsigned int tid)
{
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("Flushing TID %d"), tid);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: NULL peer", __func__);
return;
}
dp_rx_return_head_frag_desc(peer, tid);
dp_rx_defrag_cleanup(peer, tid);
}
/*
* dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
* @soc: DP SOC
*
* Flush fragments of all waitlisted TID's
*
* Returns: None
*/
void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
{
struct dp_rx_tid *rx_reorder = NULL;
struct dp_rx_tid *tmp;
uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
TAILQ_HEAD(, dp_rx_tid) temp_list;
TAILQ_INIT(&temp_list);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("Current time %u"), now_ms);
qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
defrag_waitlist_elem, tmp) {
uint32_t tid;
if (rx_reorder->defrag_timeout_ms > now_ms)
break;
tid = rx_reorder->tid;
if (tid >= DP_MAX_TIDS) {
qdf_assert(0);
continue;
}
TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
defrag_waitlist_elem);
DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
/* Move to temp list and clean-up later */
TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
defrag_waitlist_elem);
}
if (rx_reorder) {
soc->rx.defrag.next_flush_ms =
rx_reorder->defrag_timeout_ms;
} else {
soc->rx.defrag.next_flush_ms =
now_ms + soc->rx.defrag.timeout_ms;
}
qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
defrag_waitlist_elem, tmp) {
struct dp_peer *peer, *temp_peer = NULL;
qdf_spin_lock_bh(&rx_reorder->tid_lock);
TAILQ_REMOVE(&temp_list, rx_reorder,
defrag_waitlist_elem);
/* get address of current peer */
peer =
container_of(rx_reorder, struct dp_peer,
rx_tid[rx_reorder->tid]);
qdf_spin_unlock_bh(&rx_reorder->tid_lock);
temp_peer = dp_peer_find_by_id(soc, peer->peer_ids[0]);
if (temp_peer == peer) {
qdf_spin_lock_bh(&rx_reorder->tid_lock);
dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
qdf_spin_unlock_bh(&rx_reorder->tid_lock);
}
if (temp_peer)
dp_peer_unref_del_find_by_id(temp_peer);
}
}
/*
* dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
* @peer: Pointer to the peer data structure
* @tid: Transmit ID (TID)
*
* Appends per-tid fragments to global fragment wait list
*
* Returns: None
*/
static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
{
struct dp_soc *psoc = peer->vdev->pdev->soc;
struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
tid, peer, peer->mac_addr.raw);
/* TODO: use LIST macros instead of TAIL macros */
qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
defrag_waitlist_elem);
DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
}
/*
* dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
* @peer: Pointer to the peer data structure
* @tid: Transmit ID (TID)
*
* Remove fragments from waitlist
*
* Returns: None
*/
void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
{
struct dp_pdev *pdev = peer->vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_rx_tid *rx_reorder;
struct dp_rx_tid *tmp;
dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
tid, peer, peer->mac_addr.raw);
if (tid >= DP_MAX_TIDS) {
dp_err("TID out of bounds: %d", tid);
qdf_assert_always(0);
}
qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
defrag_waitlist_elem, tmp) {
struct dp_peer *peer_on_waitlist;
/* get address of current peer */
peer_on_waitlist =
container_of(rx_reorder, struct dp_peer,
rx_tid[rx_reorder->tid]);
/* Ensure it is TID for same peer */
if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
TAILQ_REMOVE(&soc->rx.defrag.waitlist,
rx_reorder, defrag_waitlist_elem);
DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
}
}
qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
}
/*
* dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
* @peer: Pointer to the peer data structure
* @tid: Transmit ID (TID)
* @head_addr: Pointer to head list
* @tail_addr: Pointer to tail list
* @frag: Incoming fragment
* @all_frag_present: Flag to indicate whether all fragments are received
*
* Build a per-tid, per-sequence fragment list.
*
* Returns: Success, if inserted
*/
static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
uint8_t *all_frag_present)
{
qdf_nbuf_t next;
qdf_nbuf_t prev = NULL;
qdf_nbuf_t cur;
uint16_t head_fragno, cur_fragno, next_fragno;
uint8_t last_morefrag = 1, count = 0;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
uint8_t *rx_desc_info;
qdf_assert(frag);
qdf_assert(head_addr);
qdf_assert(tail_addr);
*all_frag_present = 0;
rx_desc_info = qdf_nbuf_data(frag);
cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
/* If this is the first fragment */
if (!(*head_addr)) {
*head_addr = *tail_addr = frag;
qdf_nbuf_set_next(*tail_addr, NULL);
rx_tid->curr_frag_num = cur_fragno;
goto insert_done;
}
/* In sequence fragment */
if (cur_fragno > rx_tid->curr_frag_num) {
qdf_nbuf_set_next(*tail_addr, frag);
*tail_addr = frag;
qdf_nbuf_set_next(*tail_addr, NULL);
rx_tid->curr_frag_num = cur_fragno;
} else {
/* Out of sequence fragment */
cur = *head_addr;
rx_desc_info = qdf_nbuf_data(cur);
head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
if (cur_fragno == head_fragno) {
qdf_nbuf_free(frag);
goto insert_fail;
} else if (head_fragno > cur_fragno) {
qdf_nbuf_set_next(frag, cur);
cur = frag;
*head_addr = frag; /* head pointer to be updated */
} else {
while ((cur_fragno > head_fragno) && cur) {
prev = cur;
cur = qdf_nbuf_next(cur);
rx_desc_info = qdf_nbuf_data(cur);
head_fragno =
dp_rx_frag_get_mpdu_frag_number(
rx_desc_info);
}
if (cur_fragno == head_fragno) {
qdf_nbuf_free(frag);
goto insert_fail;
}
qdf_nbuf_set_next(prev, frag);
qdf_nbuf_set_next(frag, cur);
}
}
next = qdf_nbuf_next(*head_addr);
rx_desc_info = qdf_nbuf_data(*tail_addr);
last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
/* TODO: optimize the loop */
if (!last_morefrag) {
/* Check if all fragments are present */
do {
rx_desc_info = qdf_nbuf_data(next);
next_fragno =
dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
count++;
if (next_fragno != count)
break;
next = qdf_nbuf_next(next);
} while (next);
if (!next) {
*all_frag_present = 1;
return QDF_STATUS_SUCCESS;
}
}
insert_done:
return QDF_STATUS_SUCCESS;
insert_fail:
return QDF_STATUS_E_FAILURE;
}
/*
* dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
* @msdu: Pointer to the fragment
* @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
*
* decap tkip encrypted fragment
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
{
uint8_t *ivp, *orig_hdr;
int rx_desc_len = sizeof(struct rx_pkt_tlvs);
/* start of 802.11 header info */
orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
/* TKIP header is located post 802.11 header */
ivp = orig_hdr + hdrlen;
if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
return QDF_STATUS_E_DEFRAG_ERROR;
}
qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
* @nbuf: Pointer to the fragment buffer
* @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
*
* Remove MIC information from CCMP fragment
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
{
uint8_t *ivp, *orig_hdr;
int rx_desc_len = sizeof(struct rx_pkt_tlvs);
/* start of the 802.11 header */
orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
/* CCMP header is located after 802.11 header */
ivp = orig_hdr + hdrlen;
if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
return QDF_STATUS_E_DEFRAG_ERROR;
qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
* @nbuf: Pointer to the fragment
* @hdrlen: length of the header information
*
* decap CCMP encrypted fragment
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
{
uint8_t *ivp, *origHdr;
int rx_desc_len = sizeof(struct rx_pkt_tlvs);
origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
ivp = origHdr + hdrlen;
if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
return QDF_STATUS_E_DEFRAG_ERROR;
/* Let's pull the header later */
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
* @msdu: Pointer to the fragment
* @hdrlen: length of the header information
*
* decap WEP encrypted fragment
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
{
uint8_t *origHdr;
int rx_desc_len = sizeof(struct rx_pkt_tlvs);
origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
* @nbuf: Pointer to the fragment
*
* Calculate the header size of the received fragment
*
* Returns: header size (uint16_t)
*/
static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
{
uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
uint16_t size = sizeof(struct ieee80211_frame);
uint16_t fc = 0;
uint32_t to_ds, fr_ds;
uint8_t frm_ctrl_valid;
uint16_t frm_ctrl_field;
to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
if (to_ds && fr_ds)
size += QDF_MAC_ADDR_SIZE;
if (frm_ctrl_valid) {
fc = frm_ctrl_field;
/* use 1-st byte for validation */
if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
size += sizeof(uint16_t);
/* use 2-nd byte for validation */
if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
size += sizeof(struct ieee80211_htc);
}
}
return size;
}
/*
* dp_rx_defrag_michdr(): Calculate a pseudo MIC header
* @wh0: Pointer to the wireless header of the fragment
* @hdr: Array to hold the pseudo header
*
* Calculate a pseudo MIC header
*
* Returns: None
*/
static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
uint8_t hdr[])
{
const struct ieee80211_frame_addr4 *wh =
(const struct ieee80211_frame_addr4 *)wh0;
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
wh->i_addr2);
break;
case IEEE80211_FC1_DIR_TODS:
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
wh->i_addr2);
break;
case IEEE80211_FC1_DIR_FROMDS:
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
wh->i_addr3);
break;
case IEEE80211_FC1_DIR_DSTODS:
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
wh->i_addr4);
break;
}
/*
* Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
* it could also be set for deauth, disassoc, action, etc. for
* a mgt type frame. It comes into picture for MFP.
*/
if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
IEEE80211_FC1_DIR_DSTODS) {
const struct ieee80211_qosframe_addr4 *qwh =
(const struct ieee80211_qosframe_addr4 *)wh;
hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
} else {
const struct ieee80211_qosframe *qwh =
(const struct ieee80211_qosframe *)wh;
hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
}
} else {
hdr[12] = 0;
}
hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
}
/*
* dp_rx_defrag_mic(): Calculate MIC header
* @key: Pointer to the key
* @wbuf: fragment buffer
* @off: Offset
* @data_len: Data length
* @mic: Array to hold MIC
*
* Calculate a pseudo MIC header
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
uint16_t off, uint16_t data_len, uint8_t mic[])
{
uint8_t hdr[16] = { 0, };
uint32_t l, r;
const uint8_t *data;
uint32_t space;
int rx_desc_len = sizeof(struct rx_pkt_tlvs);
dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
+ rx_desc_len), hdr);
l = dp_rx_get_le32(key);
r = dp_rx_get_le32(key + 4);
/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
l ^= dp_rx_get_le32(hdr);
dp_rx_michael_block(l, r);
l ^= dp_rx_get_le32(&hdr[4]);
dp_rx_michael_block(l, r);
l ^= dp_rx_get_le32(&hdr[8]);
dp_rx_michael_block(l, r);
l ^= dp_rx_get_le32(&hdr[12]);
dp_rx_michael_block(l, r);
/* first buffer has special handling */
data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
space = qdf_nbuf_len(wbuf) - off;
for (;; ) {
if (space > data_len)
space = data_len;
/* collect 32-bit blocks from current buffer */
while (space >= sizeof(uint32_t)) {
l ^= dp_rx_get_le32(data);
dp_rx_michael_block(l, r);
data += sizeof(uint32_t);
space -= sizeof(uint32_t);
data_len -= sizeof(uint32_t);
}
if (data_len < sizeof(uint32_t))
break;
wbuf = qdf_nbuf_next(wbuf);
if (!wbuf)
return QDF_STATUS_E_DEFRAG_ERROR;
if (space != 0) {
const uint8_t *data_next;
/*
* Block straddles buffers, split references.
*/
data_next =
(uint8_t *)qdf_nbuf_data(wbuf) + off;
if ((qdf_nbuf_len(wbuf)) <
sizeof(uint32_t) - space) {
return QDF_STATUS_E_DEFRAG_ERROR;
}
switch (space) {
case 1:
l ^= dp_rx_get_le32_split(data[0],
data_next[0], data_next[1],
data_next[2]);
data = data_next + 3;
space = (qdf_nbuf_len(wbuf) - off) - 3;
break;
case 2:
l ^= dp_rx_get_le32_split(data[0], data[1],
data_next[0], data_next[1]);
data = data_next + 2;
space = (qdf_nbuf_len(wbuf) - off) - 2;
break;
case 3:
l ^= dp_rx_get_le32_split(data[0], data[1],
data[2], data_next[0]);
data = data_next + 1;
space = (qdf_nbuf_len(wbuf) - off) - 1;
break;
}
dp_rx_michael_block(l, r);
data_len -= sizeof(uint32_t);
} else {
/*
* Setup for next buffer.
*/
data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
space = qdf_nbuf_len(wbuf) - off;
}
}
/* Last block and padding (0x5a, 4..7 x 0) */
switch (data_len) {
case 0:
l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
break;
case 1:
l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
break;
case 2:
l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
break;
case 3:
l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
break;
}
dp_rx_michael_block(l, r);
dp_rx_michael_block(l, r);
dp_rx_put_le32(mic, l);
dp_rx_put_le32(mic + 4, r);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
* @key: Pointer to the key
* @msdu: fragment buffer
* @hdrlen: Length of the header information
*
* Remove MIC information from the TKIP frame
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
qdf_nbuf_t msdu, uint16_t hdrlen)
{
QDF_STATUS status;
uint32_t pktlen = 0;
uint8_t mic[IEEE80211_WEP_MICLEN];
uint8_t mic0[IEEE80211_WEP_MICLEN];
qdf_nbuf_t prev = NULL, next;
next = msdu;
while (next) {
pktlen += (qdf_nbuf_len(next) - hdrlen);
prev = next;
dp_debug("%s pktlen %u", __func__,
(uint32_t)(qdf_nbuf_len(next) - hdrlen));
next = qdf_nbuf_next(next);
}
if (!prev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s Defrag chaining failed !\n", __func__);
return QDF_STATUS_E_DEFRAG_ERROR;
}
qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
dp_f_tkip.ic_miclen, (caddr_t)mic0);
qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
pktlen -= dp_f_tkip.ic_miclen;
status = dp_rx_defrag_mic(key, msdu, hdrlen,
pktlen, mic);
if (QDF_IS_STATUS_ERROR(status))
return status;
if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
return QDF_STATUS_E_DEFRAG_ERROR;
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
* @nbuf: buffer pointer
* @hdrsize: size of the header to be pulled
*
* Pull the RXTLV & the 802.11 headers
*
* Returns: None
*/
static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
{
qdf_nbuf_pull_head(nbuf,
RX_PKT_TLVS_LEN + hdrsize);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: final pktlen %d .11len %d",
__func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
}
/*
* dp_rx_construct_fraglist(): Construct a nbuf fraglist
* @peer: Pointer to the peer
* @head: Pointer to list of fragments
* @hdrsize: Size of the header to be pulled
*
* Construct a nbuf fraglist
*
* Returns: None
*/
static void
dp_rx_construct_fraglist(struct dp_peer *peer,
qdf_nbuf_t head, uint16_t hdrsize)
{
qdf_nbuf_t msdu = qdf_nbuf_next(head);
qdf_nbuf_t rx_nbuf = msdu;
uint32_t len = 0;
while (msdu) {
dp_rx_frag_pull_hdr(msdu, hdrsize);
len += qdf_nbuf_len(msdu);
msdu = qdf_nbuf_next(msdu);
}
qdf_nbuf_append_ext_list(head, rx_nbuf, len);
qdf_nbuf_set_next(head, NULL);
qdf_nbuf_set_is_frag(head, 1);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: head len %d ext len %d data len %d ",
__func__,
(uint32_t)qdf_nbuf_len(head),
(uint32_t)qdf_nbuf_len(rx_nbuf),
(uint32_t)(head->data_len));
}
/**
* dp_rx_defrag_err() - rx err handler
* @pdev: handle to pdev object
* @vdev_id: vdev id
* @peer_mac_addr: peer mac address
* @tid: TID
* @tsf32: TSF
* @err_type: error type
* @rx_frame: rx frame
* @pn: PN Number
* @key_id: key id
*
* This function handles rx error and send MIC error notification
*
* Return: None
*/
static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
struct ol_if_ops *tops = NULL;
struct dp_pdev *pdev = vdev->pdev;
int rx_desc_len = sizeof(struct rx_pkt_tlvs);
uint8_t *orig_hdr;
struct ieee80211_frame *wh;
orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
wh = (struct ieee80211_frame *)orig_hdr;
tops = pdev->soc->cdp_soc.ol_ops;
if (tops->rx_mic_error)
tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
}
/*
* dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
* @nbuf: Pointer to the fragment buffer
* @hdrsize: Size of headers
*
* Transcap the fragment from 802.11 to 802.3
*
* Returns: None
*/
static void
dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
{
struct llc_snap_hdr_t *llchdr;
struct ethernet_hdr_t *eth_hdr;
uint8_t ether_type[2];
uint16_t fc = 0;
union dp_align_mac_addr mac_addr;
uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
if (!rx_desc_info) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Memory alloc failed ! ", __func__);
QDF_ASSERT(0);
return;
}
qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
RX_PKT_TLVS_LEN + hdrsize);
qdf_mem_copy(ether_type, llchdr->ethertype, 2);
qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
sizeof(struct llc_snap_hdr_t) -
sizeof(struct ethernet_hdr_t)));
eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
dp_debug("%s: frame control type: 0x%x", __func__, fc);
switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
hal_rx_mpdu_get_addr1(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
hal_rx_mpdu_get_addr2(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
break;
case IEEE80211_FC1_DIR_TODS:
hal_rx_mpdu_get_addr3(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
hal_rx_mpdu_get_addr2(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
break;
case IEEE80211_FC1_DIR_FROMDS:
hal_rx_mpdu_get_addr1(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
hal_rx_mpdu_get_addr3(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
break;
case IEEE80211_FC1_DIR_DSTODS:
hal_rx_mpdu_get_addr3(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
hal_rx_mpdu_get_addr4(rx_desc_info,
&mac_addr.raw[0]);
qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Unknown frame control type: 0x%x", __func__, fc);
}
qdf_mem_copy(eth_hdr->ethertype, ether_type,
sizeof(ether_type));
qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
qdf_mem_free(rx_desc_info);
}
/*
* dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
* @peer: Pointer to the peer
* @tid: Transmit Identifier
* @head: Buffer to be reinjected back
*
* Reinject the fragment chain back into REO
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
unsigned int tid, qdf_nbuf_t head)
{
struct dp_pdev *pdev = peer->vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct hal_buf_info buf_info;
void *link_desc_va;
void *msdu0, *msdu_desc_info;
void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
void *dst_mpdu_desc_info, *dst_qdesc_addr;
qdf_dma_addr_t paddr;
uint32_t nbuf_len, seq_no, dst_ind;
uint32_t *mpdu_wrd;
uint32_t ret, cookie;
void *dst_ring_desc =
peer->rx_tid[tid].dst_ring_desc;
void *hal_srng = soc->reo_reinject_ring.hal_srng;
struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
peer->rx_tid[tid].array;
qdf_nbuf_t nbuf_head;
nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
if (qdf_unlikely(!nbuf_head)) {
dp_err_rl("IPA RX REO reinject failed");
return QDF_STATUS_E_FAILURE;
}
/* update new allocated skb in case IPA is enabled */
if (nbuf_head != head) {
head = nbuf_head;
rx_desc->nbuf = head;
rx_reorder_array_elem->head = head;
}
ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
if (!ent_ring_desc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"HAL src ring next entry NULL");
return QDF_STATUS_E_FAILURE;
}
hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
qdf_assert(link_desc_va);
msdu0 = (uint8_t *)link_desc_va +
RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
/* msdu reconfig */
msdu_desc_info = (uint8_t *)msdu0 +
RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
FIRST_MSDU_IN_MPDU_FLAG, 1);
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
LAST_MSDU_IN_MPDU_FLAG, 1);
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
MSDU_CONTINUATION, 0x0);
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
REO_DESTINATION_INDICATION, dst_ind);
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
MSDU_LENGTH, nbuf_len);
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
SA_IS_VALID, 1);
HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
DA_IS_VALID, 1);
/* change RX TLV's */
hal_rx_msdu_start_msdu_len_set(
qdf_nbuf_data(head), nbuf_len);
cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
/* map the nbuf before reinject it into HW */
ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
QDF_DMA_FROM_DEVICE, RX_BUFFER_SIZE);
if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: nbuf map failed !", __func__);
return QDF_STATUS_E_FAILURE;
}
/*
* As part of rx frag handler bufffer was unmapped and rx desc
* unmapped is set to 1. So again for defrag reinject frame reset
* it back to 0.
*/
rx_desc->unmapped = 0;
dp_ipa_handle_rx_buf_smmu_mapping(soc, head, RX_BUFFER_SIZE, true);
paddr = qdf_nbuf_get_frag_paddr(head, 0);
ret = check_x86_paddr(soc, &head, &paddr, pdev);
if (ret == QDF_STATUS_E_FAILURE) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: x86 check failed !", __func__);
return QDF_STATUS_E_FAILURE;
}
hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
/* Lets fill entrance ring now !!! */
if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"HAL RING Access For REO entrance SRNG Failed: %pK",
hal_srng);
return QDF_STATUS_E_FAILURE;
}
paddr = (uint64_t)buf_info.paddr;
/* buf addr */
hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
buf_info.sw_cookie,
HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
/* mpdu desc info */
ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
sizeof(struct rx_mpdu_desc_info));
qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
MSDU_COUNT, 0x1);
HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
MPDU_SEQUENCE_NUMBER, seq_no);
/* unset frag bit */
HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
FRAGMENT_FLAG, 0x0);
/* set sa/da valid bits */
HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
SA_IS_VALID, 0x1);
HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
DA_IS_VALID, 0x1);
HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
RAW_MPDU, 0x0);
/* qdesc addr */
ent_qdesc_addr = (uint8_t *)ent_ring_desc +
REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
dst_qdesc_addr = (uint8_t *)dst_ring_desc +
REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
REO_DESTINATION_INDICATION, dst_ind);
hal_srng_access_end(soc->hal_soc, hal_srng);
DP_STATS_INC(soc, rx.reo_reinject, 1);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: reinjection done !", __func__);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag(): Defragment the fragment chain
* @peer: Pointer to the peer
* @tid: Transmit Identifier
* @frag_list_head: Pointer to head list
* @frag_list_tail: Pointer to tail list
*
* Defragment the fragment chain
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
{
qdf_nbuf_t tmp_next, prev;
qdf_nbuf_t cur = frag_list_head, msdu;
uint32_t index, tkip_demic = 0;
uint16_t hdr_space;
uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
struct dp_vdev *vdev = peer->vdev;
struct dp_soc *soc = vdev->pdev->soc;
uint8_t status = 0;
hdr_space = dp_rx_defrag_hdrsize(cur);
index = hal_rx_msdu_is_wlan_mcast(cur) ?
dp_sec_mcast : dp_sec_ucast;
/* Remove FCS from all fragments */
while (cur) {
tmp_next = qdf_nbuf_next(cur);
qdf_nbuf_set_next(cur, NULL);
qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
prev = cur;
qdf_nbuf_set_next(cur, tmp_next);
cur = tmp_next;
}
cur = frag_list_head;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: index %d Security type: %d", __func__,
index, peer->security[index].sec_type);
switch (peer->security[index].sec_type) {
case cdp_sec_type_tkip:
tkip_demic = 1;
case cdp_sec_type_tkip_nomic:
while (cur) {
tmp_next = qdf_nbuf_next(cur);
if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"dp_rx_defrag: TKIP decap failed");
return QDF_STATUS_E_DEFRAG_ERROR;
}
cur = tmp_next;
}
/* If success, increment header to be stripped later */
hdr_space += dp_f_tkip.ic_header;
break;
case cdp_sec_type_aes_ccmp:
while (cur) {
tmp_next = qdf_nbuf_next(cur);
if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"dp_rx_defrag: CCMP demic failed");
return QDF_STATUS_E_DEFRAG_ERROR;
}
if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"dp_rx_defrag: CCMP decap failed");
return QDF_STATUS_E_DEFRAG_ERROR;
}
cur = tmp_next;
}
/* If success, increment header to be stripped later */
hdr_space += dp_f_ccmp.ic_header;
break;
case cdp_sec_type_wep40:
case cdp_sec_type_wep104:
case cdp_sec_type_wep128:
while (cur) {
tmp_next = qdf_nbuf_next(cur);
if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"dp_rx_defrag: WEP decap failed");
return QDF_STATUS_E_DEFRAG_ERROR;
}
cur = tmp_next;
}
/* If success, increment header to be stripped later */
hdr_space += dp_f_wep.ic_header;
break;
default:
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"dp_rx_defrag: Did not match any security type");
break;
}
if (tkip_demic) {
msdu = frag_list_head;
if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
(void *)peer->ctrl_peer, msdu, hdr_space);
} else {
qdf_mem_copy(key,
&peer->security[index].michael_key[0],
IEEE80211_WEP_MICLEN);
status = dp_rx_defrag_tkip_demic(key, msdu,
RX_PKT_TLVS_LEN +
hdr_space);
if (status) {
dp_rx_defrag_err(vdev, frag_list_head);
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s: TKIP demic failed status %d",
__func__, status);
return QDF_STATUS_E_DEFRAG_ERROR;
}
}
}
/* Convert the header to 802.3 header */
dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_cleanup(): Clean up activities
* @peer: Pointer to the peer
* @tid: Transmit Identifier
*
* Returns: None
*/
void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
{
struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
peer->rx_tid[tid].array;
if (rx_reorder_array_elem) {
/* Free up nbufs */
dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
rx_reorder_array_elem->head = NULL;
rx_reorder_array_elem->tail = NULL;
} else {
dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
peer, tid, peer->mac_addr.raw);
}
/* Free up saved ring descriptors */
dp_rx_clear_saved_desc_info(peer, tid);
peer->rx_tid[tid].defrag_timeout_ms = 0;
peer->rx_tid[tid].curr_frag_num = 0;
peer->rx_tid[tid].curr_seq_num = 0;
}
/*
* dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
* @ring_desc: Pointer to the dst ring descriptor
* @peer: Pointer to the peer
* @tid: Transmit Identifier
*
* Returns: None
*/
static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
{
void *dst_ring_desc = qdf_mem_malloc(
sizeof(struct reo_destination_ring));
if (!dst_ring_desc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Memory alloc failed !", __func__);
QDF_ASSERT(0);
return QDF_STATUS_E_NOMEM;
}
qdf_mem_copy(dst_ring_desc, ring_desc,
sizeof(struct reo_destination_ring));
peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
peer->rx_tid[tid].head_frag_desc = rx_desc;
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_defrag_store_fragment(): Store incoming fragments
* @soc: Pointer to the SOC data structure
* @ring_desc: Pointer to the ring descriptor
* @mpdu_desc_info: MPDU descriptor info
* @tid: Traffic Identifier
* @rx_desc: Pointer to rx descriptor
* @rx_bfs: Number of bfs consumed
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
void *ring_desc,
union dp_rx_desc_list_elem_t **head,
union dp_rx_desc_list_elem_t **tail,
struct hal_rx_mpdu_desc_info *mpdu_desc_info,
unsigned tid, struct dp_rx_desc *rx_desc,
uint32_t *rx_bfs)
{
struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
struct dp_pdev *pdev;
struct dp_peer *peer = NULL;
uint16_t peer_id;
uint8_t fragno, more_frag, all_frag_present = 0;
uint16_t rxseq = mpdu_desc_info->mpdu_seq;
QDF_STATUS status;
struct dp_rx_tid *rx_tid;
uint8_t mpdu_sequence_control_valid;
uint8_t mpdu_frame_control_valid;
qdf_nbuf_t frag = rx_desc->nbuf;
uint32_t msdu_len;
if (qdf_nbuf_len(frag) > 0) {
dp_info("Dropping unexpected packet with skb_len: %d,"
"data len: %d, cookie: %d",
(uint32_t)qdf_nbuf_len(frag), frag->data_len,
rx_desc->cookie);
DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
goto discard_frag;
}
msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
qdf_nbuf_append_ext_list(frag, NULL, 0);
/* Check if the packet is from a valid peer */
peer_id = DP_PEER_METADATA_PEER_ID_GET(
mpdu_desc_info->peer_meta_data);
peer = dp_peer_find_by_id(soc, peer_id);
if (!peer) {
/* We should not receive anything from unknown peer
* however, that might happen while we are in the monitor mode.
* We don't need to handle that here
*/
dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
peer_id);
DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
goto discard_frag;
}
if (tid >= DP_MAX_TIDS) {
dp_info("TID out of bounds: %d", tid);
qdf_assert_always(0);
}
pdev = peer->vdev->pdev;
rx_tid = &peer->rx_tid[tid];
mpdu_sequence_control_valid =
hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
/* Invalid MPDU sequence control field, MPDU is of no use */
if (!mpdu_sequence_control_valid) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Invalid MPDU seq control field, dropping MPDU");
qdf_assert(0);
goto discard_frag;
}
mpdu_frame_control_valid =
hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
/* Invalid frame control field */
if (!mpdu_frame_control_valid) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Invalid frame control field, dropping MPDU");
qdf_assert(0);
goto discard_frag;
}
/* Current mpdu sequence */
more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
/* HW does not populate the fragment number as of now
* need to get from the 802.11 header
*/
fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
rx_reorder_array_elem = peer->rx_tid[tid].array;
if (!rx_reorder_array_elem) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Rcvd Fragmented pkt before peer_tid is setup");
goto discard_frag;
}
/*
* !more_frag: no more fragments to be delivered
* !frag_no: packet is not fragmented
* !rx_reorder_array_elem->head: no saved fragments so far
*/
if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
/* We should not get into this situation here.
* It means an unfragmented packet with fragment flag
* is delivered over the REO exception ring.
* Typically it follows normal rx path.
*/
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Rcvd unfragmented pkt on REO Err srng, dropping");
qdf_assert(0);
goto discard_frag;
}
/* Check if the fragment is for the same sequence or a different one */
if (rx_reorder_array_elem->head) {
if (rxseq != rx_tid->curr_seq_num) {
/* Drop stored fragments if out of sequence
* fragment is received
*/
dp_rx_reorder_flush_frag(peer, tid);
DP_STATS_INC(soc, rx.rx_frag_err, 1);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s mismatch, dropping earlier sequence ",
(rxseq == rx_tid->curr_seq_num)
? "address"
: "seq number");
/*
* The sequence number for this fragment becomes the
* new sequence number to be processed
*/
rx_tid->curr_seq_num = rxseq;
}
} else {
/* Start of a new sequence */
dp_rx_defrag_cleanup(peer, tid);
rx_tid->curr_seq_num = rxseq;
}
/*
* If the earlier sequence was dropped, this will be the fresh start.
* Else, continue with next fragment in a given sequence
*/
status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
&rx_reorder_array_elem->tail, frag,
&all_frag_present);
/*
* Currently, we can have only 6 MSDUs per-MPDU, if the current
* packet sequence has more than 6 MSDUs for some reason, we will
* have to use the next MSDU link descriptor and chain them together
* before reinjection
*/
if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
(rx_reorder_array_elem->head == frag)) {
qdf_assert_always(ring_desc);
status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
rx_desc, peer, tid);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Unable to store ring desc !", __func__);
goto discard_frag;
}
} else {
dp_rx_add_to_free_desc_list(head, tail, rx_desc);
(*rx_bfs)++;
/* Return the non-head link desc */
if (ring_desc &&
dp_rx_link_desc_return(soc, ring_desc,
HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
QDF_STATUS_SUCCESS)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Failed to return link desc", __func__);
}
if (pdev->soc->rx.flags.defrag_timeout_check)
dp_rx_defrag_waitlist_remove(peer, tid);
/* Yet to receive more fragments for this sequence number */
if (!all_frag_present) {
uint32_t now_ms =
qdf_system_ticks_to_msecs(qdf_system_ticks());
peer->rx_tid[tid].defrag_timeout_ms =
now_ms + pdev->soc->rx.defrag.timeout_ms;
dp_rx_defrag_waitlist_add(peer, tid);
dp_peer_unref_del_find_by_id(peer);
return QDF_STATUS_SUCCESS;
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"All fragments received for sequence: %d", rxseq);
/* Process the fragments */
status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
rx_reorder_array_elem->tail);
if (QDF_IS_STATUS_ERROR(status)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Fragment processing failed");
dp_rx_add_to_free_desc_list(head, tail,
peer->rx_tid[tid].head_frag_desc);
(*rx_bfs)++;
if (dp_rx_link_desc_return(soc,
peer->rx_tid[tid].dst_ring_desc,
HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
QDF_STATUS_SUCCESS)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Failed to return link desc",
__func__);
dp_rx_defrag_cleanup(peer, tid);
goto end;
}
/* Re-inject the fragments back to REO for further processing */
status = dp_rx_defrag_reo_reinject(peer, tid,
rx_reorder_array_elem->head);
if (QDF_IS_STATUS_SUCCESS(status)) {
rx_reorder_array_elem->head = NULL;
rx_reorder_array_elem->tail = NULL;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"Fragmented sequence successfully reinjected");
} else {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Fragmented sequence reinjection failed");
dp_rx_return_head_frag_desc(peer, tid);
}
dp_rx_defrag_cleanup(peer, tid);
dp_peer_unref_del_find_by_id(peer);
return QDF_STATUS_SUCCESS;
discard_frag:
qdf_nbuf_free(frag);
dp_rx_add_to_free_desc_list(head, tail, rx_desc);
if (dp_rx_link_desc_return(soc, ring_desc,
HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
QDF_STATUS_SUCCESS)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Failed to return link desc", __func__);
(*rx_bfs)++;
end:
if (peer)
dp_peer_unref_del_find_by_id(peer);
DP_STATS_INC(soc, rx.rx_frag_err, 1);
return QDF_STATUS_E_DEFRAG_ERROR;
}
/**
* dp_rx_frag_handle() - Handles fragmented Rx frames
*
* @soc: core txrx main context
* @ring_desc: opaque pointer to the REO error ring descriptor
* @mpdu_desc_info: MPDU descriptor information from ring descriptor
* @head: head of the local descriptor free-list
* @tail: tail of the local descriptor free-list
* @quota: No. of units (packets) that can be serviced in one shot.
*
* This function implements RX 802.11 fragmentation handling
* The handling is mostly same as legacy fragmentation handling.
* If required, this function can re-inject the frames back to
* REO ring (with proper setting to by-pass fragmentation check
* but use duplicate detection / re-ordering and routing these frames
* to a different core.
*
* Return: uint32_t: No. of elements processed
*/
uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
struct hal_rx_mpdu_desc_info *mpdu_desc_info,
struct dp_rx_desc *rx_desc,
uint8_t *mac_id,
uint32_t quota)
{
uint32_t rx_bufs_used = 0;
qdf_nbuf_t msdu = NULL;
uint32_t tid;
uint32_t rx_bfs = 0;
struct dp_pdev *pdev;
QDF_STATUS status = QDF_STATUS_SUCCESS;
qdf_assert(soc);
qdf_assert(mpdu_desc_info);
qdf_assert(rx_desc);
dp_debug("Number of MSDUs to process, num_msdus: %d",
mpdu_desc_info->msdu_count);
if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Not sufficient MSDUs to process");
return rx_bufs_used;
}
/* all buffers in MSDU link belong to same pdev */
pdev = soc->pdev_list[rx_desc->pool_id];
*mac_id = rx_desc->pool_id;
msdu = rx_desc->nbuf;
dp_ipa_handle_rx_buf_smmu_mapping(soc, msdu,
RX_BUFFER_SIZE, false);
qdf_nbuf_unmap_single(soc->osdev, msdu, QDF_DMA_FROM_DEVICE);
rx_desc->unmapped = 1;
rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
/* Process fragment-by-fragment */
status = dp_rx_defrag_store_fragment(soc, ring_desc,
&pdev->free_list_head,
&pdev->free_list_tail,
mpdu_desc_info,
tid, rx_desc, &rx_bfs);
if (rx_bfs)
rx_bufs_used += rx_bfs;
if (!QDF_IS_STATUS_SUCCESS(status))
dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
mpdu_desc_info->mpdu_seq,
mpdu_desc_info->msdu_count,
mpdu_desc_info->mpdu_flags);
return rx_bufs_used;
}
QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
struct dp_peer *peer, uint16_t tid,
uint16_t rxseq, qdf_nbuf_t nbuf)
{
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
uint8_t all_frag_present;
uint32_t msdu_len;
QDF_STATUS status;
rx_reorder_array_elem = peer->rx_tid[tid].array;
/*
* HW may fill in unexpected peer_id in RX PKT TLV,
* if this peer_id related peer is valid by coincidence,
* but actually this peer won't do dp_peer_rx_init(like SAP vdev
* self peer), then invalid access to rx_reorder_array_elem happened.
*/
if (!rx_reorder_array_elem) {
dp_verbose_debug(
"peer id:%d mac:" QDF_MAC_ADDR_STR "drop rx frame!",
peer->peer_ids[0],
QDF_MAC_ADDR_ARRAY(peer->mac_addr.raw));
DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
qdf_nbuf_free(nbuf);
goto fail;
}
if (rx_reorder_array_elem->head &&
rxseq != rx_tid->curr_seq_num) {
/* Drop stored fragments if out of sequence
* fragment is received
*/
dp_rx_reorder_flush_frag(peer, tid);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: No list found for TID %d Seq# %d",
__func__, tid, rxseq);
qdf_nbuf_free(nbuf);
goto fail;
}
msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
status = dp_rx_defrag_fraglist_insert(peer, tid,
&rx_reorder_array_elem->head,
&rx_reorder_array_elem->tail, nbuf,
&all_frag_present);
if (QDF_IS_STATUS_ERROR(status)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s Fragment insert failed", __func__);
goto fail;
}
if (soc->rx.flags.defrag_timeout_check)
dp_rx_defrag_waitlist_remove(peer, tid);
if (!all_frag_present) {
uint32_t now_ms =
qdf_system_ticks_to_msecs(qdf_system_ticks());
peer->rx_tid[tid].defrag_timeout_ms =
now_ms + soc->rx.defrag.timeout_ms;
dp_rx_defrag_waitlist_add(peer, tid);
return QDF_STATUS_SUCCESS;
}
status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
rx_reorder_array_elem->tail);
if (QDF_IS_STATUS_ERROR(status)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s Fragment processing failed", __func__);
dp_rx_return_head_frag_desc(peer, tid);
dp_rx_defrag_cleanup(peer, tid);
goto fail;
}
/* Re-inject the fragments back to REO for further processing */
status = dp_rx_defrag_reo_reinject(peer, tid,
rx_reorder_array_elem->head);
if (QDF_IS_STATUS_SUCCESS(status)) {
rx_reorder_array_elem->head = NULL;
rx_reorder_array_elem->tail = NULL;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
"%s: Frag seq successfully reinjected",
__func__);
} else {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Frag seq reinjection failed", __func__);
dp_rx_return_head_frag_desc(peer, tid);
}
dp_rx_defrag_cleanup(peer, tid);
return QDF_STATUS_SUCCESS;
fail:
return QDF_STATUS_E_DEFRAG_ERROR;
}