blob: 13a9cc5e0a4dbc18ae0b83fd4f12d75c14814c44 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "hal_hw_headers.h"
#include "dp_types.h"
#include "dp_rx.h"
#include "dp_peer.h"
#include "hal_rx.h"
#include "hal_api.h"
#include "qdf_nbuf.h"
#ifdef MESH_MODE_SUPPORT
#include "if_meta_hdr.h"
#endif
#include "dp_internal.h"
#include "dp_rx_mon.h"
#include "dp_ipa.h"
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#ifdef ATH_RX_PRI_SAVE
#define DP_RX_TID_SAVE(_nbuf, _tid) \
(qdf_nbuf_set_priority(_nbuf, _tid))
#else
#define DP_RX_TID_SAVE(_nbuf, _tid)
#endif
#ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
static inline
bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
{
if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
return false;
}
return true;
}
#else
static inline
bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
{
return true;
}
#endif
#ifdef CONFIG_MCL
static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
{
if (vdev->opmode != wlan_op_mode_sta)
return true;
else
return false;
}
#else
static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
{
return vdev->ap_bridge_enabled;
}
#endif
#ifdef DUP_RX_DESC_WAR
void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
void *ring_desc, struct dp_rx_desc *rx_desc)
{
void *hal_soc = soc->hal_soc;
hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
dp_rx_desc_dump(rx_desc);
}
#else
void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
void *ring_desc, struct dp_rx_desc *rx_desc)
{
void *hal_soc = soc->hal_soc;
dp_rx_desc_dump(rx_desc);
hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
hal_srng_dump_ring(hal_soc, hal_ring);
qdf_assert_always(0);
}
#endif
/*
* dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
* called during dp rx initialization
* and at the end of dp_rx_process.
*
* @soc: core txrx main context
* @mac_id: mac_id which is one of 3 mac_ids
* @dp_rxdma_srng: dp rxdma circular ring
* @rx_desc_pool: Pointer to free Rx descriptor pool
* @num_req_buffers: number of buffer to be replenished
* @desc_list: list of descs if called from dp_rx_process
* or NULL during dp rx initialization or out of buffer
* interrupt.
* @tail: tail of descs list
* @func_name: name of the caller function
* Return: return success or failure
*/
QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail,
const char *func_name)
{
uint32_t num_alloc_desc;
uint16_t num_desc_to_free = 0;
struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
uint32_t num_entries_avail;
uint32_t count;
int sync_hw_ptr = 1;
qdf_dma_addr_t paddr;
qdf_nbuf_t rx_netbuf;
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next;
QDF_STATUS ret;
void *rxdma_srng;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (!rxdma_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"rxdma srng not initialized");
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"requested %d buffers for replenish", num_req_buffers);
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
rxdma_srng,
sync_hw_ptr);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"no of available entries in rxdma ring: %d",
num_entries_avail);
if (!(*desc_list) && (num_entries_avail >
((dp_rxdma_srng->num_entries * 3) / 4))) {
num_req_buffers = num_entries_avail;
} else if (num_entries_avail < num_req_buffers) {
num_desc_to_free = num_req_buffers - num_entries_avail;
num_req_buffers = num_entries_avail;
}
if (qdf_unlikely(!num_req_buffers)) {
num_desc_to_free = num_req_buffers;
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
goto free_descs;
}
/*
* if desc_list is NULL, allocate the descs from freelist
*/
if (!(*desc_list)) {
num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
rx_desc_pool,
num_req_buffers,
desc_list,
tail);
if (!num_alloc_desc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"no free rx_descs in freelist");
DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
num_req_buffers);
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
return QDF_STATUS_E_NOMEM;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%d rx desc allocated", num_alloc_desc);
num_req_buffers = num_alloc_desc;
}
count = 0;
while (count < num_req_buffers) {
rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION,
RX_BUFFER_ALIGNMENT,
FALSE);
if (qdf_unlikely(!rx_netbuf)) {
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
continue;
}
ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
QDF_DMA_FROM_DEVICE);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_nbuf_free(rx_netbuf);
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
continue;
}
paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf,
RX_BUFFER_SIZE, true);
/*
* check if the physical address of nbuf->data is
* less then 0x50000000 then free the nbuf and try
* allocating new nbuf. We can try for 100 times.
* this is a temp WAR till we fix it properly.
*/
ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
if (ret == QDF_STATUS_E_FAILURE) {
DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
break;
}
count++;
rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
rxdma_srng);
qdf_assert_always(rxdma_ring_entry);
next = (*desc_list)->next;
dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
/* rx_desc.in_use should be zero at this time*/
qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
(*desc_list)->rx_desc.in_use = 1;
dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
func_name, RX_DESC_REPLENISHED);
dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
rx_netbuf, qdf_nbuf_data(rx_netbuf),
(unsigned long long)paddr,
(*desc_list)->rx_desc.cookie);
hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
(*desc_list)->rx_desc.cookie,
rx_desc_pool->owner);
*desc_list = next;
}
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
num_req_buffers, num_desc_to_free);
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
(RX_BUFFER_SIZE * num_req_buffers));
free_descs:
DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
/*
* add any available free desc back to the free list
*/
if (*desc_list)
dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
mac_id, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_deliver_raw() - process RAW mode pkts and hand over the
* pkts to RAW mode simulation to
* decapsulate the pkt.
*
* @vdev: vdev on which RAW mode is enabled
* @nbuf_list: list of RAW pkts to process
* @peer: peer object from which the pkt is rx
*
* Return: void
*/
void
dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
struct dp_peer *peer)
{
qdf_nbuf_t deliver_list_head = NULL;
qdf_nbuf_t deliver_list_tail = NULL;
qdf_nbuf_t nbuf;
nbuf = nbuf_list;
while (nbuf) {
qdf_nbuf_t next = qdf_nbuf_next(nbuf);
DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
/*
* reset the chfrag_start and chfrag_end bits in nbuf cb
* as this is a non-amsdu pkt and RAW mode simulation expects
* these bit s to be 0 for non-amsdu pkt.
*/
if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
qdf_nbuf_is_rx_chfrag_end(nbuf)) {
qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
}
nbuf = next;
}
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
&deliver_list_tail, (struct cdp_peer*) peer);
vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
}
#ifdef DP_LFR
/*
* In case of LFR, data of a new peer might be sent up
* even before peer is added.
*/
static inline struct dp_vdev *
dp_get_vdev_from_peer(struct dp_soc *soc,
uint16_t peer_id,
struct dp_peer *peer,
struct hal_rx_mpdu_desc_info mpdu_desc_info)
{
struct dp_vdev *vdev;
uint8_t vdev_id;
if (unlikely(!peer)) {
if (peer_id != HTT_INVALID_PEER) {
vdev_id = DP_PEER_METADATA_ID_GET(
mpdu_desc_info.peer_meta_data);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("PeerID %d not found use vdevID %d"),
peer_id, vdev_id);
vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
vdev_id);
} else {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("Invalid PeerID %d"),
peer_id);
return NULL;
}
} else {
vdev = peer->vdev;
}
return vdev;
}
#else
static inline struct dp_vdev *
dp_get_vdev_from_peer(struct dp_soc *soc,
uint16_t peer_id,
struct dp_peer *peer,
struct hal_rx_mpdu_desc_info mpdu_desc_info)
{
if (unlikely(!peer)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("Peer not found for peerID %d"),
peer_id);
return NULL;
} else {
return peer->vdev;
}
}
#endif
#ifndef FEATURE_WDS
static void
dp_rx_da_learn(struct dp_soc *soc,
uint8_t *rx_tlv_hdr,
struct dp_peer *ta_peer,
qdf_nbuf_t nbuf)
{
}
#endif
/*
* dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
*
* @soc: core txrx main context
* @ta_peer : source peer entry
* @rx_tlv_hdr : start address of rx tlvs
* @nbuf : nbuf that has to be intrabss forwarded
*
* Return: bool: true if it is forwarded else false
*/
static bool
dp_rx_intrabss_fwd(struct dp_soc *soc,
struct dp_peer *ta_peer,
uint8_t *rx_tlv_hdr,
qdf_nbuf_t nbuf)
{
uint16_t da_idx;
uint16_t len;
uint8_t is_frag;
struct dp_peer *da_peer;
struct dp_ast_entry *ast_entry;
qdf_nbuf_t nbuf_copy;
uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
tid_stats.tid_rx_stats[ring_id][tid];
/* check if the destination peer is available in peer table
* and also check if the source peer and destination peer
* belong to the same vap and destination peer is not bss peer.
*/
if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
ast_entry = soc->ast_table[da_idx];
if (!ast_entry)
return false;
if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
ast_entry->is_active = TRUE;
return false;
}
da_peer = ast_entry->peer;
if (!da_peer)
return false;
/* TA peer cannot be same as peer(DA) on which AST is present
* this indicates a change in topology and that AST entries
* are yet to be updated.
*/
if (da_peer == ta_peer)
return false;
if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
is_frag = qdf_nbuf_is_frag(nbuf);
memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
/* linearize the nbuf just before we send to
* dp_tx_send()
*/
if (qdf_unlikely(is_frag)) {
if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
return false;
nbuf = qdf_nbuf_unshare(nbuf);
if (!nbuf) {
DP_STATS_INC_PKT(ta_peer,
rx.intra_bss.fail,
1,
len);
/* return true even though the pkt is
* not forwarded. Basically skb_unshare
* failed and we want to continue with
* next nbuf.
*/
tid_stats->fail_cnt[INTRABSS_DROP]++;
return true;
}
}
if (!dp_tx_send(ta_peer->vdev, nbuf)) {
DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
len);
return true;
} else {
DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
len);
tid_stats->fail_cnt[INTRABSS_DROP]++;
return false;
}
}
}
/* if it is a broadcast pkt (eg: ARP) and it is not its own
* source, then clone the pkt and send the cloned pkt for
* intra BSS forwarding and original pkt up the network stack
* Note: how do we handle multicast pkts. do we forward
* all multicast pkts as is or let a higher layer module
* like igmpsnoop decide whether to forward or not with
* Mcast enhancement.
*/
else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
!ta_peer->bss_peer))) {
if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
goto end;
nbuf_copy = qdf_nbuf_copy(nbuf);
if (!nbuf_copy)
goto end;
len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
tid_stats->fail_cnt[INTRABSS_DROP]++;
qdf_nbuf_free(nbuf_copy);
} else {
DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
tid_stats->intrabss_cnt++;
}
}
end:
/* return false as we have to still send the original pkt
* up the stack
*/
return false;
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
* @peer: pointer to peer
*
* This function allocated memory for mesh receive stats and fill the
* required stats. Stores the memory address in skb cb.
*
* Return: void
*/
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer)
{
struct mesh_recv_hdr_s *rx_info = NULL;
uint32_t pkt_type;
uint32_t nss;
uint32_t rate_mcs;
uint32_t bw;
/* fill recv mesh stats */
rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
/* upper layers are resposible to free this memory */
if (!rx_info) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Memory allocation failed for mesh rx stats");
DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
return;
}
rx_info->rs_flags = MESH_RXHDR_VER1;
if (qdf_nbuf_is_rx_chfrag_start(nbuf))
rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
if (qdf_nbuf_is_rx_chfrag_end(nbuf))
rx_info->rs_flags |= MESH_RX_LAST_MSDU;
if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
rx_info->rs_flags |= MESH_RX_DECRYPTED;
rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
if (vdev->osif_get_key)
vdev->osif_get_key(vdev->osif_vdev,
&rx_info->rs_decryptkey[0],
&peer->mac_addr.raw[0],
rx_info->rs_keyix);
}
rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
(bw << 24);
qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
rx_info->rs_flags,
rx_info->rs_rssi,
rx_info->rs_channel,
rx_info->rs_ratephy1,
rx_info->rs_keyix);
}
/**
* dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
*
* This checks if the received packet is matching any filter out
* catogery and and drop the packet if it matches.
*
* Return: status(0 indicates drop, 1 indicate to no drop)
*/
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
union dp_align_mac_addr mac_addr;
if (qdf_unlikely(vdev->mesh_rx_filter)) {
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE))
return QDF_STATUS_SUCCESS;
}
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE))
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
#else
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer)
{
}
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
return QDF_STATUS_E_FAILURE;
}
#endif
#ifdef FEATURE_NAC_RSSI
/**
* dp_rx_nac_filter(): Function to perform filtering of non-associated
* clients
* @pdev: DP pdev handle
* @rx_pkt_hdr: Rx packet Header
*
* return: dp_vdev*
*/
static
struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
uint8_t *rx_pkt_hdr)
{
struct ieee80211_frame *wh;
struct dp_neighbour_peer *peer = NULL;
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
return NULL;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
QDF_TRACE(
QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
peer->neighbour_peers_macaddr.raw[0],
peer->neighbour_peers_macaddr.raw[1],
peer->neighbour_peers_macaddr.raw[2],
peer->neighbour_peers_macaddr.raw[3],
peer->neighbour_peers_macaddr.raw[4],
peer->neighbour_peers_macaddr.raw[5]);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return pdev->monitor_vdev;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return NULL;
}
/**
* dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
* @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
* pool_id has same mapping)
*
* return: integer type
*/
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
uint8_t mac_id)
{
struct dp_invalid_peer_msg msg;
struct dp_vdev *vdev = NULL;
struct dp_pdev *pdev = NULL;
struct ieee80211_frame *wh;
qdf_nbuf_t curr_nbuf, next_nbuf;
uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"Drop decapped frames");
goto free;
}
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (!DP_FRAME_IS_DATA(wh)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"NAWDS valid only for data frames");
goto free;
}
if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid nbuf length");
goto free;
}
pdev = dp_get_pdev_for_mac_id(soc, mac_id);
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"PDEV not found");
goto free;
}
if (pdev->filter_neighbour_peers) {
/* Next Hop scenario not yet handle */
vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
if (vdev) {
dp_rx_mon_deliver(soc, pdev->pdev_id,
pdev->invalid_peer_head_msdu,
pdev->invalid_peer_tail_msdu);
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
return 0;
}
}
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
goto out;
}
}
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"VDEV not found");
goto free;
}
out:
msg.wh = wh;
qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
msg.nbuf = mpdu;
msg.vdev_id = vdev->vdev_id;
if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
&msg);
free:
/* Drop and free packet */
curr_nbuf = mpdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
return 0;
}
/**
* dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
* @mpdu_done: if an mpdu is completed
* @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
* pool_id has same mapping)
*
* return: integer type
*/
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done,
uint8_t mac_id)
{
/* Only trigger the process when mpdu is completed */
if (mpdu_done)
dp_rx_process_invalid_peer(soc, mpdu, mac_id);
}
#else
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
uint8_t mac_id)
{
qdf_nbuf_t curr_nbuf, next_nbuf;
struct dp_pdev *pdev;
struct dp_vdev *vdev = NULL;
struct ieee80211_frame *wh;
uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (!DP_FRAME_IS_DATA(wh)) {
QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
"only for data frames");
goto free;
}
if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid nbuf length");
goto free;
}
pdev = dp_get_pdev_for_mac_id(soc, mac_id);
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
"PDEV not found");
goto free;
}
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
goto out;
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"VDEV not found");
goto free;
}
out:
if (soc->cdp_soc.ol_ops->rx_invalid_peer)
soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
free:
/* reset the head and tail pointers */
pdev = dp_get_pdev_for_mac_id(soc, mac_id);
if (pdev) {
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
}
/* Drop and free packet */
curr_nbuf = mpdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
return 0;
}
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done,
uint8_t mac_id)
{
/* Process the nbuf */
dp_rx_process_invalid_peer(soc, mpdu, mac_id);
}
#endif
#ifdef RECEIVE_OFFLOAD
/**
* dp_rx_print_offload_info() - Print offload info from RX TLV
* @rx_tlv: RX TLV for which offload information is to be printed
*
* Return: None
*/
static void dp_rx_print_offload_info(uint8_t *rx_tlv)
{
dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
dp_verbose_debug("---------------------------------------------------------");
}
/**
* dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
* @soc: DP SOC handle
* @rx_tlv: RX TLV received for the msdu
* @msdu: msdu for which GRO info needs to be filled
* @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
*
* Return: None
*/
static
void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
{
if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
return;
/* Filling up RX offload info only for TCP packets */
if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
return;
*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
QDF_NBUF_CB_RX_TCP_WIN(msdu) =
HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
HAL_RX_TLV_GET_IPV6(rx_tlv);
QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
QDF_NBUF_CB_RX_FLOW_ID(msdu) =
HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
dp_rx_print_offload_info(rx_tlv);
}
#else
static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
{
}
#endif /* RECEIVE_OFFLOAD */
/**
* dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
*
* @nbuf: pointer to msdu.
* @mpdu_len: mpdu length
*
* Return: returns true if nbuf is last msdu of mpdu else retuns false.
*/
static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
{
bool last_nbuf;
if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
last_nbuf = false;
} else {
qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
last_nbuf = true;
}
*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
return last_nbuf;
}
/**
* dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
* multiple nbufs.
* @nbuf: pointer to the first msdu of an amsdu.
*
* This function implements the creation of RX frag_list for cases
* where an MSDU is spread across multiple nbufs.
*
* Return: returns the head nbuf which contains complete frag_list.
*/
qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
{
qdf_nbuf_t parent, next, frag_list;
uint16_t frag_list_len = 0;
uint16_t mpdu_len;
bool last_nbuf;
/*
* Use msdu len got from REO entry descriptor instead since
* there is case the RX PKT TLV is corrupted while msdu_len
* from REO descriptor is right for non-raw RX scatter msdu.
*/
mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
/*
* this is a case where the complete msdu fits in one single nbuf.
* in this case HW sets both start and end bit and we only need to
* reset these bits for RAW mode simulator to decap the pkt
*/
if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
qdf_nbuf_is_rx_chfrag_end(nbuf)) {
qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
return nbuf;
}
/*
* This is a case where we have multiple msdus (A-MSDU) spread across
* multiple nbufs. here we create a fraglist out of these nbufs.
*
* the moment we encounter a nbuf with continuation bit set we
* know for sure we have an MSDU which is spread across multiple
* nbufs. We loop through and reap nbufs till we reach last nbuf.
*/
parent = nbuf;
frag_list = nbuf->next;
nbuf = nbuf->next;
/*
* set the start bit in the first nbuf we encounter with continuation
* bit set. This has the proper mpdu length set as it is the first
* msdu of the mpdu. this becomes the parent nbuf and the subsequent
* nbufs will form the frag_list of the parent nbuf.
*/
qdf_nbuf_set_rx_chfrag_start(parent, 1);
last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
/*
* this is where we set the length of the fragments which are
* associated to the parent nbuf. We iterate through the frag_list
* till we hit the last_nbuf of the list.
*/
do {
last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
frag_list_len += qdf_nbuf_len(nbuf);
if (last_nbuf) {
next = nbuf->next;
nbuf->next = NULL;
break;
}
nbuf = nbuf->next;
} while (!last_nbuf);
qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
parent->next = next;
qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
return parent;
}
/**
* dp_rx_compute_delay() - Compute and fill in all timestamps
* to pass in correct fields
*
* @vdev: pdev handle
* @tx_desc: tx descriptor
* @tid: tid value
* Return: none
*/
void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
uint32_t interframe_delay =
(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
dp_update_delay_stats(vdev->pdev, to_stack, tid,
CDP_DELAY_STATS_REAP_STACK, ring_id);
/*
* Update interframe delay stats calculated at deliver_data_ol point.
* Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
* interframe delay will not be calculate correctly for 1st frame.
* On the other side, this will help in avoiding extra per packet check
* of vdev->prev_rx_deliver_tstamp.
*/
dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
vdev->prev_rx_deliver_tstamp = current_ts;
}
/**
* dp_rx_drop_nbuf_list() - drop an nbuf list
* @pdev: dp pdev reference
* @buf_list: buffer list to be dropepd
*
* Return: int (number of bufs dropped)
*/
static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
qdf_nbuf_t buf_list)
{
struct cdp_tid_rx_stats *stats = NULL;
uint8_t tid = 0, ring_id = 0;
int num_dropped = 0;
qdf_nbuf_t buf, next_buf;
buf = buf_list;
while (buf) {
ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
next_buf = qdf_nbuf_queue_next(buf);
tid = qdf_nbuf_get_tid_val(buf);
if (qdf_likely(pdev)) {
stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
stats->fail_cnt[INVALID_PEER_VDEV]++;
stats->delivered_to_stack--;
}
qdf_nbuf_free(buf);
buf = next_buf;
num_dropped++;
}
return num_dropped;
}
#ifdef PEER_CACHE_RX_PKTS
/**
* dp_rx_flush_rx_cached() - flush cached rx frames
* @peer: peer
* @drop: flag to drop frames or forward to net stack
*
* Return: None
*/
void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
{
struct dp_peer_cached_bufq *bufqi;
struct dp_rx_cached_buf *cache_buf = NULL;
ol_txrx_rx_fp data_rx = NULL;
int num_buff_elem;
QDF_STATUS status;
if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
qdf_atomic_dec(&peer->flush_in_progress);
return;
}
qdf_spin_lock_bh(&peer->peer_info_lock);
if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
data_rx = peer->vdev->osif_rx;
else
drop = true;
qdf_spin_unlock_bh(&peer->peer_info_lock);
bufqi = &peer->bufq_info;
qdf_spin_lock_bh(&bufqi->bufq_lock);
qdf_list_remove_front(&bufqi->cached_bufq,
(qdf_list_node_t **)&cache_buf);
while (cache_buf) {
num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
cache_buf->buf);
bufqi->entries -= num_buff_elem;
qdf_spin_unlock_bh(&bufqi->bufq_lock);
if (drop) {
bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
cache_buf->buf);
} else {
/* Flush the cached frames to OSIF DEV */
status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
if (status != QDF_STATUS_SUCCESS)
bufqi->dropped = dp_rx_drop_nbuf_list(
peer->vdev->pdev,
cache_buf->buf);
}
qdf_mem_free(cache_buf);
cache_buf = NULL;
qdf_spin_lock_bh(&bufqi->bufq_lock);
qdf_list_remove_front(&bufqi->cached_bufq,
(qdf_list_node_t **)&cache_buf);
}
qdf_spin_unlock_bh(&bufqi->bufq_lock);
qdf_atomic_dec(&peer->flush_in_progress);
}
/**
* dp_rx_enqueue_rx() - cache rx frames
* @peer: peer
* @rx_buf_list: cache buffer list
*
* Return: None
*/
static QDF_STATUS
dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
{
struct dp_rx_cached_buf *cache_buf;
struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
int num_buff_elem;
dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
bufqi->dropped);
if (!peer->valid) {
bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
rx_buf_list);
return QDF_STATUS_E_INVAL;
}
qdf_spin_lock_bh(&bufqi->bufq_lock);
if (bufqi->entries >= bufqi->thresh) {
bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
rx_buf_list);
qdf_spin_unlock_bh(&bufqi->bufq_lock);
return QDF_STATUS_E_RESOURCES;
}
qdf_spin_unlock_bh(&bufqi->bufq_lock);
num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
if (!cache_buf) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Failed to allocate buf to cache rx frames");
bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
rx_buf_list);
return QDF_STATUS_E_NOMEM;
}
cache_buf->buf = rx_buf_list;
qdf_spin_lock_bh(&bufqi->bufq_lock);
qdf_list_insert_back(&bufqi->cached_bufq,
&cache_buf->node);
bufqi->entries += num_buff_elem;
qdf_spin_unlock_bh(&bufqi->bufq_lock);
return QDF_STATUS_SUCCESS;
}
static inline
bool dp_rx_is_peer_cache_bufq_supported(void)
{
return true;
}
#else
static inline
bool dp_rx_is_peer_cache_bufq_supported(void)
{
return false;
}
static inline QDF_STATUS
dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
{
return QDF_STATUS_SUCCESS;
}
#endif
#ifndef DELIVERY_TO_STACK_STATUS_CHECK
/**
* dp_rx_check_delivery_to_stack() - Deliver pkts to network
* using the appropriate call back functions.
* @soc: soc
* @vdev: vdev
* @peer: peer
* @nbuf_head: skb list head
* @nbuf_tail: skb list tail
*
* Return: None
*/
static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_peer *peer,
qdf_nbuf_t nbuf_head)
{
vdev->osif_rx(vdev->osif_vdev, nbuf_head);
}
#else
/**
* dp_rx_check_delivery_to_stack() - Deliver pkts to network
* using the appropriate call back functions.
* @soc: soc
* @vdev: vdev
* @peer: peer
* @nbuf_head: skb list head
* @nbuf_tail: skb list tail
*
* Check the return status of the call back function and drop
* the packets if the return status indicates a failure.
*
* Return: None
*/
static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_peer *peer,
qdf_nbuf_t nbuf_head)
{
int num_nbuf = 0;
QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
if (vdev->osif_rx)
ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
if (peer)
DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
}
}
#endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
void dp_rx_deliver_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_peer *peer,
qdf_nbuf_t nbuf_head,
qdf_nbuf_t nbuf_tail)
{
int num_nbuf = 0;
if (qdf_unlikely(!vdev || vdev->delete.pending)) {
num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
/*
* This is a special case where vdev is invalid,
* so we cannot know the pdev to which this packet
* belonged. Hence we update the soc rx error stats.
*/
DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
return;
}
/*
* highly unlikely to have a vdev without a registered rx
* callback function. if so let us free the nbuf_list.
*/
if (qdf_unlikely(!vdev->osif_rx)) {
if (peer && dp_rx_is_peer_cache_bufq_supported()) {
dp_rx_enqueue_rx(peer, nbuf_head);
} else {
num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
nbuf_head);
DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
}
return;
}
if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
&nbuf_tail, (struct cdp_peer *) peer);
}
dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
}
/**
* dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
*
* The ipsumed field of the skb is set based on whether HW validated the
* IP/TCP/UDP checksum.
*
* Return: void
*/
static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
qdf_nbuf_rx_cksum_t cksum = {0};
bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
qdf_nbuf_set_rx_cksum(nbuf, &cksum);
} else {
DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
}
}
/**
* dp_rx_msdu_stats_update() - update per msdu stats.
* @soc: core txrx main context
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
* @peer: pointer to the peer object.
* @ring_id: reo dest ring number on which pkt is reaped.
* @tid_stats: per tid rx stats.
*
* update all the per msdu stats for that nbuf.
* Return: void
*/
static void dp_rx_msdu_stats_update(struct dp_soc *soc,
qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr,
struct dp_peer *peer,
uint8_t ring_id,
struct cdp_tid_rx_stats *tid_stats)
{
bool is_ampdu, is_not_amsdu;
uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
struct dp_vdev *vdev = peer->vdev;
qdf_ether_header_t *eh;
uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
qdf_nbuf_is_rx_chfrag_end(nbuf);
DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
tid_stats->msdu_cnt++;
if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
tid_stats->mcast_msdu_cnt++;
if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
tid_stats->bcast_msdu_cnt++;
}
}
/*
* currently we can return from here as we have similar stats
* updated at per ppdu level instead of msdu level
*/
if (!soc->process_rx_status)
return;
is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
tid = qdf_nbuf_get_tid_val(nbuf);
bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
DP_STATS_INC(peer, rx.bw[bw], 1);
/*
* only if nss > 0 and pkt_type is 11N/AC/AX,
* then increase index [nss - 1] in array counter.
*/
if (nss > 0 && (pkt_type == DOT11_N ||
pkt_type == DOT11_AC ||
pkt_type == DOT11_AX))
DP_STATS_INC(peer, rx.nss[nss - 1], 1);
DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
DP_STATS_INCC(peer, rx.err.mic_err, 1,
hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
if ((soc->process_rx_status) &&
hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
if (!vdev->pdev)
return;
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&peer->stats, peer->peer_ids[0],
UPDATE_PEER_STATS,
vdev->pdev->pdev_id);
#endif
}
}
static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
void *rx_tlv_hdr,
qdf_nbuf_t nbuf)
{
if ((qdf_nbuf_is_sa_valid(nbuf) &&
(hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
(!qdf_nbuf_is_da_mcbc(nbuf) &&
qdf_nbuf_is_da_valid(nbuf) &&
(hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr) >
wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
return false;
return true;
}
#ifndef WDS_VENDOR_EXTENSION
int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
struct dp_vdev *vdev,
struct dp_peer *peer)
{
return 1;
}
#endif
#ifdef RX_DESC_DEBUG_CHECK
/**
* dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
* corruption
*
* @ring_desc: REO ring descriptor
* @rx_desc: Rx descriptor
*
* Return: NONE
*/
static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
struct dp_rx_desc *rx_desc)
{
struct hal_buf_info hbi;
hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
/* Sanity check for possible buffer paddr corruption */
qdf_assert_always((&hbi)->paddr ==
qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
}
#else
static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
struct dp_rx_desc *rx_desc)
{
}
#endif
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
static inline
bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
{
bool limit_hit = false;
struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
limit_hit =
(num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
if (limit_hit)
DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
return limit_hit;
}
static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
{
return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
}
#else
static inline
bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
{
return false;
}
static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
{
return false;
}
#endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
#ifdef DP_RX_PKT_NO_PEER_DELIVER
/**
* dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
* no corresbonding peer found
* @soc: core txrx main context
* @nbuf: pkt skb pointer
*
* This function will try to deliver some RX special frames to stack
* even there is no peer matched found. for instance, LFR case, some
* eapol data will be sent to host before peer_map done.
*
* Return: None
*/
static
void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
{
uint32_t peer_mdata;
uint16_t peer_id;
uint8_t vdev_id;
struct dp_vdev *vdev;
uint32_t l2_hdr_offset = 0;
uint16_t msdu_len = 0;
uint32_t pkt_len = 0;
uint8_t *rx_tlv_hdr;
uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
peer_mdata = QDF_NBUF_CB_RX_PEER_ID(nbuf);
peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
if (peer_id > soc->max_peers)
goto deliver_fail;
vdev_id = DP_PEER_METADATA_ID_GET(peer_mdata);
vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
if (!vdev || vdev->delete.pending || !vdev->osif_rx)
goto deliver_fail;
if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
goto deliver_fail;
rx_tlv_hdr = qdf_nbuf_data(nbuf);
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
qdf_nbuf_set_pktlen(nbuf, pkt_len);
qdf_nbuf_pull_head(nbuf,
RX_PKT_TLVS_LEN +
l2_hdr_offset);
if (dp_rx_is_special_frame(nbuf, frame_mask)) {
vdev->osif_rx(vdev->osif_vdev, nbuf);
DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
return;
}
deliver_fail:
DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
QDF_NBUF_CB_RX_PKT_LEN(nbuf));
qdf_nbuf_free(nbuf);
}
#else
static inline
void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
{
DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
QDF_NBUF_CB_RX_PKT_LEN(nbuf));
qdf_nbuf_free(nbuf);
}
#endif
/**
* dp_rx_srng_get_num_pending() - get number of pending entries
* @hal_soc: hal soc opaque pointer
* @hal_ring: opaque pointer to the HAL Rx Ring
* @num_entries: number of entries in the hal_ring.
* @near_full: pointer to a boolean. This is set if ring is near full.
*
* The function returns the number of entries in a destination ring which are
* yet to be reaped. The function also checks if the ring is near full.
* If more than half of the ring needs to be reaped, the ring is considered
* approaching full.
* The function useses hal_srng_dst_num_valid_locked to get the number of valid
* entries. It should not be called within a SRNG lock. HW pointer value is
* synced into cached_hp.
*
* Return: Number of pending entries in the hal_ring
*/
static
uint32_t dp_rx_srng_get_num_pending(void *hal_soc,
void *hal_ring_hdl,
uint32_t num_entries,
bool *near_full)
{
uint32_t num_pending = 0;
num_pending = hal_srng_dst_num_valid_locked(hal_soc,
hal_ring_hdl,
true);
if (num_entries && (num_pending >= num_entries >> 1))
*near_full = true;
else
*near_full = false;
return num_pending;
}
/**
* dp_rx_process() - Brain of the Rx processing functionality
* Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
* @int_ctx: per interrupt context
* @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
* @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
* @quota: No. of units (packets) that can be serviced in one shot.
*
* This function implements the core of Rx functionality. This is
* expected to handle only non-error frames.
*
* Return: uint32_t: No. of elements processed
*/
uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
uint8_t reo_ring_num, uint32_t quota)
{
void *hal_soc;
void *ring_desc;
struct dp_rx_desc *rx_desc = NULL;
qdf_nbuf_t nbuf, next;
bool near_full;
union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
uint32_t num_pending;
uint32_t rx_bufs_used = 0, rx_buf_cookie;
uint32_t l2_hdr_offset = 0;
uint16_t msdu_len = 0;
uint16_t peer_id;
struct dp_peer *peer;
struct dp_vdev *vdev;
uint32_t pkt_len = 0;
struct hal_rx_mpdu_desc_info mpdu_desc_info;
struct hal_rx_msdu_desc_info msdu_desc_info;
enum hal_reo_error_status error;
uint32_t peer_mdata;
uint8_t *rx_tlv_hdr;
uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
uint8_t mac_id = 0;
struct dp_pdev *pdev;
struct dp_pdev *rx_pdev;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
struct dp_soc *soc = int_ctx->soc;
uint8_t ring_id = 0;
uint8_t core_id = 0;
struct cdp_tid_rx_stats *tid_stats;
qdf_nbuf_t nbuf_head;
qdf_nbuf_t nbuf_tail;
qdf_nbuf_t deliver_list_head;
qdf_nbuf_t deliver_list_tail;
uint32_t num_rx_bufs_reaped = 0;
uint32_t intr_id;
struct hif_opaque_softc *scn;
int32_t tid = 0;
bool is_prev_msdu_last = true;
uint32_t num_entries_avail = 0;
uint32_t rx_ol_pkt_cnt = 0;
uint32_t num_entries = 0;
DP_HIST_INIT();
qdf_assert_always(soc && hal_ring);
hal_soc = soc->hal_soc;
qdf_assert_always(hal_soc);
scn = soc->hif_handle;
hif_pm_runtime_mark_dp_rx_busy(scn);
intr_id = int_ctx->dp_intr_id;
num_entries = hal_srng_get_num_entries(hal_soc,
hal_ring);
more_data:
/* reset local variables here to be re-used in the function */
nbuf_head = NULL;
nbuf_tail = NULL;
deliver_list_head = NULL;
deliver_list_tail = NULL;
peer = NULL;
vdev = NULL;
num_rx_bufs_reaped = 0;
qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
qdf_mem_zero(head, sizeof(head));
qdf_mem_zero(tail, sizeof(tail));
if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring))) {
/*
* Need API to convert from hal_ring pointer to
* Ring Type / Ring Id combo
*/
DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("HAL RING Access Failed -- %pK"), hal_ring);
goto done;
}
/*
* start reaping the buffers from reo ring and queue
* them in per vdev queue.
* Process the received pkts in a different per vdev loop.
*/
while (qdf_likely(quota &&
(ring_desc = hal_srng_dst_peek(hal_soc, hal_ring)))) {
error = HAL_RX_ERROR_STATUS_GET(ring_desc);
ring_id = hal_srng_ring_id_get(hal_ring);
if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HAL RING 0x%pK:error %d"), hal_ring, error);
DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
/* Don't know how to deal with this -- assert */
qdf_assert(0);
}
rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
qdf_assert(rx_desc);
/*
* this is a unlikely scenario where the host is reaping
* a descriptor which it already reaped just a while ago
* but is yet to replenish it back to HW.
* In this case host will dump the last 128 descriptors
* including the software descriptor rx_desc and assert.
*/
if (qdf_unlikely(!rx_desc->in_use)) {
DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
dp_info_rl("Reaping rx_desc not in use!");
dp_rx_dump_info_and_assert(soc, hal_ring,
ring_desc, rx_desc);
/* ignore duplicate RX desc and continue to process */
/* Pop out the descriptor*/
hal_srng_dst_get_next(hal_soc, hal_ring);
continue;
}
if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
dp_rx_dump_info_and_assert(soc, hal_ring,
ring_desc, rx_desc);
}
dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
/* Get MPDU DESC info */
hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
/* Get MSDU DESC info */
hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
if (qdf_unlikely(msdu_desc_info.msdu_flags &
HAL_MSDU_F_MSDU_CONTINUATION)) {
/* previous msdu has end bit set, so current one is
* the new MPDU
*/
if (is_prev_msdu_last) {
/* Get number of entries available in HW ring */
num_entries_avail =
hal_srng_dst_num_valid(hal_soc, hal_ring, 1);
/* For new MPDU check if we can read complete
* MPDU by comparing the number of buffers
* available and number of buffers needed to
* reap this MPDU
*/
if (((msdu_desc_info.msdu_len /
(RX_BUFFER_SIZE - RX_PKT_TLVS_LEN) + 1)) >
num_entries_avail) {
DP_STATS_INC(
soc,
rx.msdu_scatter_wait_break,
1);
break;
}
is_prev_msdu_last = false;
}
}
/*
* move unmap after scattered msdu waiting break logic
* in case double skb unmap happened.
*/
dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
RX_BUFFER_SIZE, false);
qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
QDF_DMA_FROM_DEVICE);
rx_desc->unmapped = 1;
core_id = smp_processor_id();
DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
HAL_MPDU_F_RAW_AMPDU))
qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
if (!is_prev_msdu_last &&
msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
is_prev_msdu_last = true;
/* Pop out the descriptor*/
hal_srng_dst_get_next(hal_soc, hal_ring);
rx_bufs_reaped[rx_desc->pool_id]++;
peer_mdata = mpdu_desc_info.peer_meta_data;
QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
/*
* save msdu flags first, last and continuation msdu in
* nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
* length to nbuf->cb. This ensures the info required for
* per pkt processing is always in the same cache line.
* This helps in improving throughput for smaller pkt
* sizes.
*/
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
qdf_nbuf_set_tid_val(rx_desc->nbuf,
HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
/*
* if continuation bit is set then we have MSDU spread
* across multiple buffers, let us not decrement quota
* till we reap all buffers of that MSDU.
*/
if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
quota -= 1;
dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
&tail[rx_desc->pool_id],
rx_desc);
num_rx_bufs_reaped++;
/*
* only if complete msdu is received for scatter case,
* then allow break.
*/
if (is_prev_msdu_last &&
dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
break;
}
done:
dp_srng_access_end(int_ctx, soc, hal_ring);
for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
/*
* continue with next mac_id if no pkts were reaped
* from that pool
*/
if (!rx_bufs_reaped[mac_id])
continue;
pdev = soc->pdev_list[mac_id];
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
rx_desc_pool = &soc->rx_desc_buf[mac_id];
dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
rx_desc_pool, rx_bufs_reaped[mac_id],
&head[mac_id], &tail[mac_id]);
}
dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
/* Peer can be NULL is case of LFR */
if (qdf_likely(peer))
vdev = NULL;
/*
* BIG loop where each nbuf is dequeued from global queue,
* processed and queued back on a per vdev basis. These nbufs
* are sent to stack as and when we run out of nbufs
* or a new nbuf dequeued from global queue has a different
* vdev when compared to previous nbuf.
*/
nbuf = nbuf_head;
while (nbuf) {
next = nbuf->next;
rx_tlv_hdr = qdf_nbuf_data(nbuf);
/* Get TID from struct cb->tid_val, save to tid */
if (qdf_nbuf_is_rx_chfrag_start(nbuf))
tid = qdf_nbuf_get_tid_val(nbuf);
/*
* Check if DMA completed -- msdu_done is the last bit
* to be written
*/
rx_pdev = soc->pdev_list[rx_desc->pool_id];
DP_RX_TID_SAVE(nbuf, tid);
if (qdf_unlikely(rx_pdev->delay_stats_flag))
qdf_nbuf_set_timestamp(nbuf);
tid_stats = &rx_pdev->stats.tid_stats.
tid_rx_stats[ring_id][tid];
if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
dp_err("MSDU DONE failure");
DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
QDF_TRACE_LEVEL_INFO);
tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
qdf_nbuf_free(nbuf);
qdf_assert(0);
nbuf = next;
continue;
}
peer_mdata = QDF_NBUF_CB_RX_PEER_ID(nbuf);
peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
peer = dp_peer_find_by_id(soc, peer_id);
if (peer) {
QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
qdf_dp_trace_set_track(nbuf, QDF_RX);
QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
QDF_NBUF_RX_PKT_DATA_TRACK;
}
rx_bufs_used++;
if (deliver_list_head && peer && (vdev != peer->vdev)) {
dp_rx_deliver_to_stack(soc, vdev, peer,
deliver_list_head,
deliver_list_tail);
deliver_list_head = NULL;
deliver_list_tail = NULL;
}
if (qdf_likely(peer)) {
vdev = peer->vdev;
} else {
tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
nbuf->next = NULL;
dp_rx_deliver_to_stack_no_peer(soc, nbuf);
nbuf = next;
continue;
}
if (qdf_unlikely(!vdev)) {
tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
qdf_nbuf_free(nbuf);
nbuf = next;
DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
dp_peer_unref_del_find_by_id(peer);
continue;
}
DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
/*
* First IF condition:
* 802.11 Fragmented pkts are reinjected to REO
* HW block as SG pkts and for these pkts we only
* need to pull the RX TLVS header length.
* Second IF condition:
* The below condition happens when an MSDU is spread
* across multiple buffers. This can happen in two cases
* 1. The nbuf size is smaller then the received msdu.
* ex: we have set the nbuf size to 2048 during
* nbuf_alloc. but we received an msdu which is
* 2304 bytes in size then this msdu is spread
* across 2 nbufs.
*
* 2. AMSDUs when RAW mode is enabled.
* ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
* across 1st nbuf and 2nd nbuf and last MSDU is
* spread across 2nd nbuf and 3rd nbuf.
*
* for these scenarios let us create a skb frag_list and
* append these buffers till the last MSDU of the AMSDU
* Third condition:
* This is the most likely case, we receive 802.3 pkts
* decapsulated by HW, here we need to set the pkt length.
*/
if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
bool is_mcbc, is_sa_vld, is_da_vld;
is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr);
is_da_vld = hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr);
qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
qdf_nbuf_set_da_valid(nbuf, is_da_vld);
qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
} else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
nbuf = dp_rx_sg_create(nbuf);
next = nbuf->next;
if (qdf_nbuf_is_raw_frame(nbuf)) {
DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
} else {
qdf_nbuf_free(nbuf);
DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
dp_info_rl("scatter msdu len %d, dropped", msdu_len);
nbuf = next;
dp_peer_unref_del_find_by_id(peer);
continue;
}
} else {
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
qdf_nbuf_set_pktlen(nbuf, pkt_len);
qdf_nbuf_pull_head(nbuf,
RX_PKT_TLVS_LEN +
l2_hdr_offset);
}
if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Policy Check Drop pkt"));
tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
/* Drop & free packet */
qdf_nbuf_free(nbuf);
/* Statistics */
nbuf = next;
dp_peer_unref_del_find_by_id(peer);
continue;
}
if (qdf_unlikely(peer && (peer->nawds_enabled) &&
(qdf_nbuf_is_da_mcbc(nbuf)) &&
(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) ==
false))) {
tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
qdf_nbuf_free(nbuf);
nbuf = next;
dp_peer_unref_del_find_by_id(peer);
continue;
}
if (soc->process_rx_status)
dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
/* Update the protocol tag in SKB based on CCE metadata */
dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
reo_ring_num, false, true);
dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
ring_id, tid_stats);
if (qdf_unlikely(vdev->mesh_vdev)) {
if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
== QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO_MED,
FL("mesh pkt filtered"));
tid_stats->fail_cnt[MESH_FILTER_DROP]++;
DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1);
qdf_nbuf_free(nbuf);
nbuf = next;
dp_peer_unref_del_find_by_id(peer);
continue;
}
dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
}
if (qdf_likely(vdev->rx_decap_type ==
htt_cmn_pkt_type_ethernet) &&
qdf_likely(!vdev->mesh_vdev)) {
/* WDS Destination Address Learning */
dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
/* Due to HW issue, sometimes we see that the sa_idx
* and da_idx are invalid with sa_valid and da_valid
* bits set
*
* in this case we also see that value of
* sa_sw_peer_id is set as 0
*
* Drop the packet if sa_idx and da_idx OOB or
* sa_sw_peerid is 0
*/
if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) {
qdf_nbuf_free(nbuf);
nbuf = next;
DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
dp_peer_unref_del_find_by_id(peer);
continue;
}
/* WDS Source Port Learning */
if (qdf_likely(vdev->wds_enabled))
dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
peer, nbuf);
/* Intrabss-fwd */
if (dp_rx_check_ap_bridge(vdev))
if (dp_rx_intrabss_fwd(soc,
peer,
rx_tlv_hdr,
nbuf)) {
nbuf = next;
dp_peer_unref_del_find_by_id(peer);
tid_stats->intrabss_cnt++;
continue; /* Get next desc */
}
}
dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
DP_RX_LIST_APPEND(deliver_list_head,
deliver_list_tail,
nbuf);
DP_STATS_INC_PKT(peer, rx.to_stack, 1,
QDF_NBUF_CB_RX_PKT_LEN(nbuf));
tid_stats->delivered_to_stack++;
nbuf = next;
dp_peer_unref_del_find_by_id(peer);
}
if (deliver_list_head && peer)
dp_rx_deliver_to_stack(soc, vdev, peer,
deliver_list_head,
deliver_list_tail);
if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
if (quota) {
num_pending =
dp_rx_srng_get_num_pending(hal_soc,
hal_ring,
num_entries,
&near_full);
if (num_pending) {
DP_STATS_INC(soc, rx.hp_oos2, 1);
if (!hif_exec_should_yield(scn, intr_id))
goto more_data;
if (qdf_unlikely(near_full)) {
DP_STATS_INC(soc, rx.near_full, 1);
goto more_data;
}
}
}
if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
vdev->osif_gro_flush(vdev->osif_vdev,
reo_ring_num);
}
}
/* Update histogram statistics by looping through pdev's */
DP_RX_HIST_STATS_PER_PDEV();
return rx_bufs_used; /* Assume no scale factor for now */
}
QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
{
QDF_STATUS ret;
if (vdev->osif_rx_flush) {
ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
if (!QDF_IS_STATUS_SUCCESS(ret)) {
dp_err("Failed to flush rx pkts for vdev %d\n",
vdev->vdev_id);
return ret;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_rx_pdev_detach() - detach dp rx
* @pdev: core txrx pdev context
*
* This function will detach DP RX into main device context
* will free DP Rx resources.
*
* Return: void
*/
void
dp_rx_pdev_detach(struct dp_pdev *pdev)
{
uint8_t pdev_id = pdev->pdev_id;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[pdev_id];
if (rx_desc_pool->pool_size != 0) {
if (!dp_is_soc_reinit(soc))
dp_rx_desc_nbuf_and_pool_free(soc, pdev_id,
rx_desc_pool);
else
dp_rx_desc_nbuf_free(soc, rx_desc_pool);
}
return;
}
static QDF_STATUS
dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
struct dp_pdev *dp_pdev)
{
qdf_dma_addr_t paddr;
QDF_STATUS ret = QDF_STATUS_E_FAILURE;
*nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT,
FALSE);
if (!(*nbuf)) {
dp_err("nbuf alloc failed");
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
return ret;
}
ret = qdf_nbuf_map_single(dp_soc->osdev, *nbuf,
QDF_DMA_FROM_DEVICE);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_nbuf_free(*nbuf);
dp_err("nbuf map failed");
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
return ret;
}
paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
ret = check_x86_paddr(dp_soc, nbuf, &paddr, dp_pdev);
if (ret == QDF_STATUS_E_FAILURE) {
qdf_nbuf_unmap_single(dp_soc->osdev, *nbuf,
QDF_DMA_FROM_DEVICE);
qdf_nbuf_free(*nbuf);
dp_err("nbuf check x86 failed");
DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
return ret;
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers)
{
struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
void *rxdma_srng = dp_rxdma_srng->hal_srng;
union dp_rx_desc_list_elem_t *next;
void *rxdma_ring_entry;
qdf_dma_addr_t paddr;
qdf_nbuf_t *rx_nbuf_arr;
uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
uint32_t buffer_index, nbuf_ptrs_per_page;
qdf_nbuf_t nbuf;
QDF_STATUS ret;
int page_idx, total_pages;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
if (qdf_unlikely(!rxdma_srng)) {
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
num_req_buffers, &desc_list, &tail);
if (!nr_descs) {
dp_err("no free rx_descs in freelist");
DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
return QDF_STATUS_E_NOMEM;
}
dp_debug("got %u RX descs for driver attach", nr_descs);
/*
* Try to allocate pointers to the nbuf one page at a time.
* Take pointers that can fit in one page of memory and
* iterate through the total descriptors that need to be
* allocated in order of pages. Reuse the pointers that
* have been allocated to fit in one page across each
* iteration to index into the nbuf.
*/
total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
/*
* Add an extra page to store the remainder if any
*/
if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
total_pages++;
rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
if (!rx_nbuf_arr) {
dp_err("failed to allocate nbuf array");
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
QDF_BUG(0);
return QDF_STATUS_E_NOMEM;
}
nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
for (page_idx = 0; page_idx < total_pages; page_idx++) {
qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
/*
* The last page of buffer pointers may not be required
* completely based on the number of descriptors. Below
* check will ensure we are allocating only the
* required number of descriptors.
*/
if (nr_nbuf_total >= nr_descs)
break;
ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
&rx_nbuf_arr[nr_nbuf],
dp_pdev);
if (QDF_IS_STATUS_ERROR(ret))
break;
nr_nbuf_total++;
}
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
rxdma_ring_entry =
hal_srng_src_get_next(dp_soc->hal_soc,
rxdma_srng);
qdf_assert_always(rxdma_ring_entry);
next = desc_list->next;
nbuf = rx_nbuf_arr[buffer_index];
paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
desc_list->rx_desc.in_use = 1;
dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
__func__,
RX_DESC_REPLENISHED);
hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
desc_list->rx_desc.cookie,
rx_desc_pool->owner);
dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf,
RX_BUFFER_SIZE, true);
desc_list = next;
}
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
}
dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
qdf_mem_free(rx_nbuf_arr);
if (!nr_nbuf_total) {
dp_err("No nbuf's allocated");
QDF_BUG(0);
return QDF_STATUS_E_RESOURCES;
}
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf,
RX_BUFFER_SIZE * nr_nbuf_total);
return QDF_STATUS_SUCCESS;
}
/**
* dp_rx_attach() - attach DP RX
* @pdev: core txrx pdev context
*
* This function will attach a DP RX instance into the main
* device (SOC) context. Will allocate dp rx resource and
* initialize resources.
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS
dp_rx_pdev_attach(struct dp_pdev *pdev)
{
uint8_t pdev_id = pdev->pdev_id;
struct dp_soc *soc = pdev->soc;
uint32_t rxdma_entries;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"nss-wifi<4> skip Rx refil %d", pdev_id);
return QDF_STATUS_SUCCESS;
}
pdev = soc->pdev_list[pdev_id];
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
rxdma_entries = dp_rxdma_srng->num_entries;
soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
rx_desc_pool = &soc->rx_desc_buf[pdev_id];
dp_rx_desc_pool_alloc(soc, pdev_id,
DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
rx_desc_pool);
rx_desc_pool->owner = DP_WBM2SW_RBM;
/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng,
rx_desc_pool, rxdma_entries - 1);
}
/*
* dp_rx_nbuf_prepare() - prepare RX nbuf
* @soc: core txrx main context
* @pdev: core txrx pdev context
*
* This function alloc & map nbuf for RX dma usage, retry it if failed
* until retry times reaches max threshold or succeeded.
*
* Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
*/
qdf_nbuf_t
dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
{
uint8_t *buf;
int32_t nbuf_retry_count;
QDF_STATUS ret;
qdf_nbuf_t nbuf = NULL;
for (nbuf_retry_count = 0; nbuf_retry_count <
QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
nbuf_retry_count++) {
/* Allocate a new skb */
nbuf = qdf_nbuf_alloc(soc->osdev,
RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION,
RX_BUFFER_ALIGNMENT,
FALSE);
if (!nbuf) {
DP_STATS_INC(pdev,
replenish.nbuf_alloc_fail, 1);
continue;
}
buf = qdf_nbuf_data(nbuf);
memset(buf, 0, RX_BUFFER_SIZE);
ret = qdf_nbuf_map_single(soc->osdev, nbuf,
QDF_DMA_FROM_DEVICE);
/* nbuf map failed */
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_nbuf_free(nbuf);
DP_STATS_INC(pdev, replenish.map_err, 1);
continue;
}
/* qdf_nbuf alloc and map succeeded */
break;
}
/* qdf_nbuf still alloc or map failed */
if (qdf_unlikely(nbuf_retry_count >=
QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
return NULL;
return nbuf;
}
#ifdef DP_RX_SPECIAL_FRAME_NEED
bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
qdf_nbuf_t nbuf, uint32_t frame_mask,
uint8_t *rx_tlv_hdr)
{
uint32_t l2_hdr_offset = 0;
uint16_t msdu_len = 0;
uint32_t skip_len;
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
skip_len = l2_hdr_offset;
} else {
msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
}
QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
qdf_nbuf_pull_head(nbuf, skip_len);
if (dp_rx_is_special_frame(nbuf, frame_mask)) {
dp_rx_deliver_to_stack(soc, peer->vdev, peer,
nbuf, NULL);
return true;
}
return false;
}
#endif