blob: 3b7951b530d953ac2d076bcdc83aa8698dfc5536 [file] [log] [blame]
/*
* Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <scheduler_api.h>
#include <scheduler_core.h>
#include <qdf_atomic.h>
#include <qdf_module.h>
#include <qdf_platform.h>
QDF_STATUS scheduler_disable(void)
{
struct scheduler_ctx *sched_ctx;
sched_debug("Disabling Scheduler");
sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_INVAL;
if (!sched_ctx->sch_thread) {
sched_debug("Scheduler already disabled");
return QDF_STATUS_SUCCESS;
}
/* send shutdown signal to scheduler thread */
qdf_atomic_set_bit(MC_SHUTDOWN_EVENT_MASK, &sched_ctx->sch_event_flag);
qdf_atomic_set_bit(MC_POST_EVENT_MASK, &sched_ctx->sch_event_flag);
qdf_wake_up_interruptible(&sched_ctx->sch_wait_queue);
/* wait for scheduler thread to shutdown */
qdf_wait_single_event(&sched_ctx->sch_shutdown, 0);
sched_ctx->sch_thread = NULL;
/* flush any unprocessed scheduler messages */
scheduler_queues_flush(sched_ctx);
return QDF_STATUS_SUCCESS;
}
static inline void scheduler_watchdog_notify(struct scheduler_ctx *sched)
{
char symbol[QDF_SYMBOL_LEN];
if (sched->watchdog_callback)
qdf_sprint_symbol(symbol, sched->watchdog_callback);
sched_fatal("Callback %s (type 0x%x) exceeded its allotted time of %ds",
sched->watchdog_callback ? symbol : "<null>",
sched->watchdog_msg_type,
sched->timeout / 1000);
}
static void scheduler_watchdog_timeout(void *arg)
{
struct scheduler_ctx *sched = arg;
if (qdf_is_recovering()) {
sched_debug("Recovery is in progress ignore timeout");
return;
}
scheduler_watchdog_notify(sched);
if (sched->sch_thread)
qdf_print_thread_trace(sched->sch_thread);
/* avoid crashing during shutdown */
if (qdf_atomic_test_bit(MC_SHUTDOWN_EVENT_MASK, &sched->sch_event_flag))
return;
sched_err("Triggering self recovery on sheduler timeout");
qdf_trigger_self_recovery(NULL, QDF_SCHED_TIMEOUT);
}
QDF_STATUS scheduler_enable(void)
{
struct scheduler_ctx *sched_ctx;
sched_debug("Enabling Scheduler");
sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_INVAL;
qdf_atomic_clear_bit(MC_SHUTDOWN_EVENT_MASK,
&sched_ctx->sch_event_flag);
qdf_atomic_clear_bit(MC_POST_EVENT_MASK,
&sched_ctx->sch_event_flag);
/* create the scheduler thread */
sched_ctx->sch_thread = qdf_create_thread(scheduler_thread, sched_ctx,
"scheduler_thread");
if (!sched_ctx->sch_thread) {
sched_fatal("Failed to create scheduler thread");
return QDF_STATUS_E_RESOURCES;
}
sched_debug("Scheduler thread created");
/* wait for the scheduler thread to startup */
qdf_wake_up_process(sched_ctx->sch_thread);
qdf_wait_single_event(&sched_ctx->sch_start_event, 0);
sched_debug("Scheduler thread started");
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_init(void)
{
QDF_STATUS status;
struct scheduler_ctx *sched_ctx;
sched_debug("Initializing Scheduler");
status = scheduler_create_ctx();
if (QDF_IS_STATUS_ERROR(status)) {
sched_fatal("Failed to create context; status:%d", status);
return status;
}
sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx) {
status = QDF_STATUS_E_FAILURE;
goto ctx_destroy;
}
status = scheduler_queues_init(sched_ctx);
if (QDF_IS_STATUS_ERROR(status)) {
sched_fatal("Failed to init queues; status:%d", status);
goto ctx_destroy;
}
status = qdf_event_create(&sched_ctx->sch_start_event);
if (QDF_IS_STATUS_ERROR(status)) {
sched_fatal("Failed to create start event; status:%d", status);
goto queues_deinit;
}
status = qdf_event_create(&sched_ctx->sch_shutdown);
if (QDF_IS_STATUS_ERROR(status)) {
sched_fatal("Failed to create shutdown event; status:%d",
status);
goto start_event_destroy;
}
status = qdf_event_create(&sched_ctx->resume_sch_event);
if (QDF_IS_STATUS_ERROR(status)) {
sched_fatal("Failed to create resume event; status:%d", status);
goto shutdown_event_destroy;
}
qdf_spinlock_create(&sched_ctx->sch_thread_lock);
qdf_init_waitqueue_head(&sched_ctx->sch_wait_queue);
sched_ctx->sch_event_flag = 0;
sched_ctx->timeout = SCHEDULER_WATCHDOG_TIMEOUT;
qdf_timer_init(NULL,
&sched_ctx->watchdog_timer,
&scheduler_watchdog_timeout,
sched_ctx,
QDF_TIMER_TYPE_SW);
qdf_register_mc_timer_callback(scheduler_mc_timer_callback);
return QDF_STATUS_SUCCESS;
shutdown_event_destroy:
qdf_event_destroy(&sched_ctx->sch_shutdown);
start_event_destroy:
qdf_event_destroy(&sched_ctx->sch_start_event);
queues_deinit:
scheduler_queues_deinit(sched_ctx);
ctx_destroy:
scheduler_destroy_ctx();
return status;
}
QDF_STATUS scheduler_deinit(void)
{
QDF_STATUS status;
struct scheduler_ctx *sched_ctx;
sched_debug("Deinitializing Scheduler");
sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_INVAL;
qdf_timer_free(&sched_ctx->watchdog_timer);
qdf_spinlock_destroy(&sched_ctx->sch_thread_lock);
qdf_event_destroy(&sched_ctx->resume_sch_event);
qdf_event_destroy(&sched_ctx->sch_shutdown);
qdf_event_destroy(&sched_ctx->sch_start_event);
status = scheduler_queues_deinit(sched_ctx);
if (QDF_IS_STATUS_ERROR(status))
sched_err("Failed to deinit queues; status:%d", status);
status = scheduler_destroy_ctx();
if (QDF_IS_STATUS_ERROR(status))
sched_err("Failed to destroy context; status:%d", status);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_post_msg_by_priority(uint32_t qid,
struct scheduler_msg *msg,
bool is_high_priority)
{
uint8_t qidx;
struct scheduler_mq_type *target_mq;
struct scheduler_msg *queue_msg;
struct scheduler_ctx *sched_ctx;
uint16_t src_id;
uint16_t dest_id;
uint16_t que_id;
QDF_BUG(msg);
if (!msg)
return QDF_STATUS_E_INVAL;
sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_INVAL;
if (!sched_ctx->sch_thread) {
sched_err("Cannot post message; scheduler thread is stopped");
return QDF_STATUS_E_FAILURE;
}
if (msg->reserved != 0 && msg->reserved != SYS_MSG_COOKIE) {
QDF_DEBUG_PANIC("Scheduler messages must be initialized");
return QDF_STATUS_E_FAILURE;
}
dest_id = scheduler_get_dest_id(qid);
src_id = scheduler_get_src_id(qid);
que_id = scheduler_get_que_id(qid);
if (que_id >= QDF_MODULE_ID_MAX || src_id >= QDF_MODULE_ID_MAX ||
dest_id >= QDF_MODULE_ID_MAX) {
sched_err("Src_id/Dest_id invalid, cannot post message");
return QDF_STATUS_E_FAILURE;
}
/* Target_If is a special message queue in phase 3 convergence beacause
* its used by both legacy WMA and as well as new UMAC components which
* directly populate callback handlers in message body.
* 1) WMA legacy messages should not have callback
* 2) New target_if message needs to have valid callback
* Clear callback handler for legacy WMA messages such that in case
* if someone is sending legacy WMA message from stack which has
* uninitialized callback then its handled properly. Also change
* legacy WMA message queue id to target_if queue such that its always
* handled in right order.
*/
if (QDF_MODULE_ID_WMA == que_id) {
msg->callback = NULL;
/* change legacy WMA message id to new target_if mq id */
que_id = QDF_MODULE_ID_TARGET_IF;
}
qdf_mtrace(src_id, dest_id, msg->type, 0xFF, 0);
qidx = sched_ctx->queue_ctx.scheduler_msg_qid_to_qidx[que_id];
if (qidx >= SCHEDULER_NUMBER_OF_MSG_QUEUE) {
sched_err("Scheduler is deinitialized ignore msg");
return QDF_STATUS_E_FAILURE;
}
if (!sched_ctx->queue_ctx.scheduler_msg_process_fn[qidx]) {
QDF_DEBUG_PANIC("callback not registered for qid[%d]", que_id);
return QDF_STATUS_E_FAILURE;
}
target_mq = &(sched_ctx->queue_ctx.sch_msg_q[qidx]);
queue_msg = scheduler_core_msg_dup(msg);
if (!queue_msg)
return QDF_STATUS_E_NOMEM;
if (is_high_priority)
scheduler_mq_put_front(target_mq, queue_msg);
else
scheduler_mq_put(target_mq, queue_msg);
qdf_atomic_set_bit(MC_POST_EVENT_MASK, &sched_ctx->sch_event_flag);
qdf_wake_up_interruptible(&sched_ctx->sch_wait_queue);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_register_module(QDF_MODULE_ID qid,
scheduler_msg_process_fn_t callback)
{
struct scheduler_mq_ctx *ctx;
struct scheduler_ctx *sched_ctx = scheduler_get_context();
sched_enter();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
if (sched_ctx->sch_last_qidx >= SCHEDULER_NUMBER_OF_MSG_QUEUE) {
sched_err("Already registered max %d no of message queues",
SCHEDULER_NUMBER_OF_MSG_QUEUE);
return QDF_STATUS_E_FAILURE;
}
ctx = &sched_ctx->queue_ctx;
ctx->scheduler_msg_qid_to_qidx[qid] = sched_ctx->sch_last_qidx;
ctx->sch_msg_q[sched_ctx->sch_last_qidx].qid = qid;
ctx->scheduler_msg_process_fn[sched_ctx->sch_last_qidx] = callback;
sched_ctx->sch_last_qidx++;
sched_exit();
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_deregister_module(QDF_MODULE_ID qid)
{
struct scheduler_mq_ctx *ctx;
struct scheduler_ctx *sched_ctx = scheduler_get_context();
uint8_t qidx;
sched_enter();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
ctx = &sched_ctx->queue_ctx;
qidx = ctx->scheduler_msg_qid_to_qidx[qid];
ctx->scheduler_msg_process_fn[qidx] = NULL;
sched_ctx->sch_last_qidx--;
ctx->scheduler_msg_qid_to_qidx[qidx] = SCHEDULER_NUMBER_OF_MSG_QUEUE;
sched_exit();
return QDF_STATUS_SUCCESS;
}
void scheduler_resume(void)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
if (sched_ctx)
qdf_event_set(&sched_ctx->resume_sch_event);
}
void scheduler_register_hdd_suspend_callback(hdd_suspend_callback callback)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
if (sched_ctx)
sched_ctx->hdd_callback = callback;
}
void scheduler_wake_up_controller_thread(void)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
if (sched_ctx)
qdf_wake_up_interruptible(&sched_ctx->sch_wait_queue);
}
void scheduler_set_event_mask(uint32_t event_mask)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
if (sched_ctx)
qdf_atomic_set_bit(event_mask, &sched_ctx->sch_event_flag);
}
void scheduler_clear_event_mask(uint32_t event_mask)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
if (sched_ctx)
qdf_atomic_clear_bit(event_mask, &sched_ctx->sch_event_flag);
}
QDF_STATUS scheduler_target_if_mq_handler(struct scheduler_msg *msg)
{
QDF_STATUS status;
struct scheduler_ctx *sched_ctx = scheduler_get_context();
QDF_STATUS (*target_if_msg_handler)(struct scheduler_msg *);
QDF_BUG(msg);
if (!msg)
return QDF_STATUS_E_FAILURE;
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
target_if_msg_handler = msg->callback;
/* Target_If is a special message queue in phase 3 convergence beacause
* its used by both legacy WMA and as well as new UMAC components. New
* UMAC components directly pass their message handlers as callback in
* message body.
* 1) All Legacy WMA messages do not contain message callback so invoke
* registered legacy WMA handler. Scheduler message posting APIs
* makes sure legacy WMA messages do not have callbacks.
* 2) For new messages which have valid callbacks invoke their callbacks
* directly.
*/
if (!target_if_msg_handler)
status = sched_ctx->legacy_wma_handler(msg);
else
status = target_if_msg_handler(msg);
return status;
}
QDF_STATUS scheduler_os_if_mq_handler(struct scheduler_msg *msg)
{
QDF_STATUS (*os_if_msg_handler)(struct scheduler_msg *);
QDF_BUG(msg);
if (!msg)
return QDF_STATUS_E_FAILURE;
os_if_msg_handler = msg->callback;
QDF_BUG(os_if_msg_handler);
if (!os_if_msg_handler)
return QDF_STATUS_E_FAILURE;
os_if_msg_handler(msg);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_timer_q_mq_handler(struct scheduler_msg *msg)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
qdf_mc_timer_callback_t timer_callback;
QDF_BUG(msg);
if (!msg)
return QDF_STATUS_E_FAILURE;
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
/* legacy sys message handler? */
if (msg->reserved != SYS_MSG_COOKIE || msg->type != SYS_MSG_ID_MC_TIMER)
return sched_ctx->legacy_sys_handler(msg);
/* scheduler_msg_process_fn_t and qdf_mc_timer_callback_t have
* different parameters and return type
*/
timer_callback = (qdf_mc_timer_callback_t)msg->callback;
QDF_BUG(timer_callback);
if (!timer_callback)
return QDF_STATUS_E_FAILURE;
timer_callback(msg->bodyptr);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_mlme_mq_handler(struct scheduler_msg *msg)
{
scheduler_msg_process_fn_t mlme_msg_handler;
QDF_BUG(msg);
if (!msg)
return QDF_STATUS_E_FAILURE;
mlme_msg_handler = msg->callback;
QDF_BUG(mlme_msg_handler);
if (!mlme_msg_handler)
return QDF_STATUS_E_FAILURE;
mlme_msg_handler(msg);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_scan_mq_handler(struct scheduler_msg *msg)
{
QDF_STATUS (*scan_q_msg_handler)(struct scheduler_msg *);
QDF_BUG(msg);
if (!msg)
return QDF_STATUS_E_FAILURE;
scan_q_msg_handler = msg->callback;
QDF_BUG(scan_q_msg_handler);
if (!scan_q_msg_handler)
return QDF_STATUS_E_FAILURE;
scan_q_msg_handler(msg);
return QDF_STATUS_SUCCESS;
}
void scheduler_set_watchdog_timeout(uint32_t timeout)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return;
sched_ctx->timeout = timeout;
}
QDF_STATUS scheduler_register_wma_legacy_handler(scheduler_msg_process_fn_t
wma_callback)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
sched_ctx->legacy_wma_handler = wma_callback;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_register_sys_legacy_handler(scheduler_msg_process_fn_t
sys_callback)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
sched_ctx->legacy_sys_handler = sys_callback;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_deregister_wma_legacy_handler(void)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
sched_ctx->legacy_wma_handler = NULL;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_deregister_sys_legacy_handler(void)
{
struct scheduler_ctx *sched_ctx = scheduler_get_context();
QDF_BUG(sched_ctx);
if (!sched_ctx)
return QDF_STATUS_E_FAILURE;
sched_ctx->legacy_sys_handler = NULL;
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS scheduler_msg_flush_noop(struct scheduler_msg *msg)
{
return QDF_STATUS_SUCCESS;
}
void scheduler_mc_timer_callback(qdf_mc_timer_t *timer)
{
struct scheduler_msg msg = {0};
QDF_STATUS status;
qdf_mc_timer_callback_t callback = NULL;
void *user_data = NULL;
QDF_TIMER_TYPE type = QDF_TIMER_TYPE_SW;
QDF_BUG(timer);
if (!timer)
return;
qdf_spin_lock_irqsave(&timer->platform_info.spinlock);
switch (timer->state) {
case QDF_TIMER_STATE_STARTING:
/* we are in this state because someone just started the timer,
* MC timer got started and expired, but the time content have
* not been updated this is a rare race condition!
*/
timer->state = QDF_TIMER_STATE_STOPPED;
status = QDF_STATUS_E_ALREADY;
break;
case QDF_TIMER_STATE_STOPPED:
status = QDF_STATUS_E_ALREADY;
break;
case QDF_TIMER_STATE_UNUSED:
status = QDF_STATUS_E_EXISTS;
break;
case QDF_TIMER_STATE_RUNNING:
/* need to go to stop state here because the call-back function
* may restart timer (to emulate periodic timer)
*/
timer->state = QDF_TIMER_STATE_STOPPED;
/* copy the relevant timer information to local variables;
* once we exits from this critical section, the timer content
* may be modified by other tasks
*/
callback = timer->callback;
user_data = timer->user_data;
type = timer->type;
status = QDF_STATUS_SUCCESS;
break;
default:
QDF_ASSERT(0);
status = QDF_STATUS_E_FAULT;
break;
}
qdf_spin_unlock_irqrestore(&timer->platform_info.spinlock);
if (QDF_IS_STATUS_ERROR(status)) {
sched_debug("MC timer fired but is not running; skip callback");
return;
}
qdf_try_allowing_sleep(type);
QDF_BUG(callback);
if (!callback)
return;
/* serialize to scheduler controller thread */
msg.type = SYS_MSG_ID_MC_TIMER;
msg.reserved = SYS_MSG_COOKIE;
msg.callback = (scheduler_msg_process_fn_t)callback;
msg.bodyptr = user_data;
msg.bodyval = 0;
/* bodyptr points to user data, do not free it during msg flush */
msg.flush_callback = scheduler_msg_flush_noop;
status = scheduler_post_message(QDF_MODULE_ID_SCHEDULER,
QDF_MODULE_ID_SCHEDULER,
QDF_MODULE_ID_SYS, &msg);
if (QDF_IS_STATUS_ERROR(status))
sched_err("Could not enqueue timer to timer queue");
}
QDF_STATUS scheduler_get_queue_size(QDF_MODULE_ID qid, uint32_t *size)
{
uint8_t qidx;
struct scheduler_mq_type *target_mq;
struct scheduler_ctx *sched_ctx;
sched_ctx = scheduler_get_context();
if (!sched_ctx)
return QDF_STATUS_E_INVAL;
/* WMA also uses the target_if queue, so replace the QID */
if (QDF_MODULE_ID_WMA == qid)
qid = QDF_MODULE_ID_TARGET_IF;
qidx = sched_ctx->queue_ctx.scheduler_msg_qid_to_qidx[qid];
if (qidx >= SCHEDULER_NUMBER_OF_MSG_QUEUE) {
sched_err("Scheduler is deinitialized");
return QDF_STATUS_E_FAILURE;
}
target_mq = &(sched_ctx->queue_ctx.sch_msg_q[qidx]);
*size = qdf_list_size(&target_mq->mq_list);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS scheduler_post_message_debug(QDF_MODULE_ID src_id,
QDF_MODULE_ID dest_id,
QDF_MODULE_ID que_id,
struct scheduler_msg *msg,
int line,
const char *func)
{
QDF_STATUS status;
status = scheduler_post_msg(scheduler_get_qid(src_id, dest_id, que_id),
msg);
if (QDF_IS_STATUS_ERROR(status))
sched_err("couldn't post from %d to %d - called from %d, %s",
src_id, dest_id, line, func);
return status;
}
qdf_export_symbol(scheduler_post_message_debug);