blob: 144ff10cd5ca5967d28b10fbcd6779f124e97007 [file] [log] [blame]
//! Linux auxv support.
//!
//! # Safety
//!
//! This uses raw pointers to locate and read the kernel-provided auxv array.
#![allow(unsafe_code)]
use crate::backend::c;
use crate::backend::elf::*;
use crate::fd::OwnedFd;
#[cfg(feature = "param")]
use crate::ffi::CStr;
use crate::fs::{Mode, OFlags};
use crate::utils::{as_ptr, check_raw_pointer};
use alloc::vec::Vec;
use core::ffi::c_void;
use core::mem::size_of;
use core::ptr::{null_mut, read_unaligned, NonNull};
#[cfg(feature = "runtime")]
use core::slice;
use core::sync::atomic::Ordering::Relaxed;
use core::sync::atomic::{AtomicPtr, AtomicUsize};
use linux_raw_sys::general::{
AT_BASE, AT_CLKTCK, AT_EXECFN, AT_HWCAP, AT_HWCAP2, AT_NULL, AT_PAGESZ, AT_PHDR, AT_PHENT,
AT_PHNUM, AT_SYSINFO_EHDR,
};
#[cfg(feature = "param")]
#[inline]
pub(crate) fn page_size() -> usize {
let mut page_size = PAGE_SIZE.load(Relaxed);
if page_size == 0 {
init_auxv();
page_size = PAGE_SIZE.load(Relaxed);
}
page_size
}
#[cfg(feature = "param")]
#[inline]
pub(crate) fn clock_ticks_per_second() -> u64 {
let mut ticks = CLOCK_TICKS_PER_SECOND.load(Relaxed);
if ticks == 0 {
init_auxv();
ticks = CLOCK_TICKS_PER_SECOND.load(Relaxed);
}
ticks as u64
}
#[cfg(feature = "param")]
#[inline]
pub(crate) fn linux_hwcap() -> (usize, usize) {
let mut hwcap = HWCAP.load(Relaxed);
let mut hwcap2 = HWCAP2.load(Relaxed);
if hwcap == 0 || hwcap2 == 0 {
init_auxv();
hwcap = HWCAP.load(Relaxed);
hwcap2 = HWCAP2.load(Relaxed);
}
(hwcap, hwcap2)
}
#[cfg(feature = "param")]
#[inline]
pub(crate) fn linux_execfn() -> &'static CStr {
let mut execfn = EXECFN.load(Relaxed);
if execfn.is_null() {
init_auxv();
execfn = EXECFN.load(Relaxed);
}
// SAFETY: We assume the `AT_EXECFN` value provided by the kernel is a
// valid pointer to a valid NUL-terminated array of bytes.
unsafe { CStr::from_ptr(execfn.cast()) }
}
#[cfg(feature = "runtime")]
#[inline]
pub(crate) fn exe_phdrs() -> (*const c::c_void, usize) {
let mut phdr = PHDR.load(Relaxed);
let mut phnum = PHNUM.load(Relaxed);
if phdr.is_null() || phnum == 0 {
init_auxv();
phdr = PHDR.load(Relaxed);
phnum = PHNUM.load(Relaxed);
}
(phdr.cast(), phnum)
}
#[cfg(feature = "runtime")]
#[inline]
pub(in super::super) fn exe_phdrs_slice() -> &'static [Elf_Phdr] {
let (phdr, phnum) = exe_phdrs();
// SAFETY: We assume the `AT_PHDR` and `AT_PHNUM` values provided by the
// kernel form a valid slice.
unsafe { slice::from_raw_parts(phdr.cast(), phnum) }
}
/// `AT_SYSINFO_EHDR` isn't present on all platforms in all configurations,
/// so if we don't see it, this function returns a null pointer.
#[inline]
pub(in super::super) fn sysinfo_ehdr() -> *const Elf_Ehdr {
let mut ehdr = SYSINFO_EHDR.load(Relaxed);
if ehdr.is_null() {
init_auxv();
ehdr = SYSINFO_EHDR.load(Relaxed);
}
ehdr
}
static PAGE_SIZE: AtomicUsize = AtomicUsize::new(0);
static CLOCK_TICKS_PER_SECOND: AtomicUsize = AtomicUsize::new(0);
static HWCAP: AtomicUsize = AtomicUsize::new(0);
static HWCAP2: AtomicUsize = AtomicUsize::new(0);
static SYSINFO_EHDR: AtomicPtr<Elf_Ehdr> = AtomicPtr::new(null_mut());
static PHDR: AtomicPtr<Elf_Phdr> = AtomicPtr::new(null_mut());
static PHNUM: AtomicUsize = AtomicUsize::new(0);
static EXECFN: AtomicPtr<c::c_char> = AtomicPtr::new(null_mut());
fn pr_get_auxv() -> crate::io::Result<Vec<u8>> {
use super::super::conv::{c_int, pass_usize, ret_usize};
const PR_GET_AUXV: c::c_int = 0x41555856;
let mut buffer = alloc::vec![0u8; 512];
let len = unsafe {
ret_usize(syscall_always_asm!(
__NR_prctl,
c_int(PR_GET_AUXV),
buffer.as_ptr(),
pass_usize(buffer.len())
))?
};
if len <= buffer.len() {
buffer.truncate(len);
return Ok(buffer);
}
buffer.resize(len, 0);
let len = unsafe {
ret_usize(syscall_always_asm!(
__NR_prctl,
c_int(PR_GET_AUXV),
buffer.as_ptr(),
pass_usize(buffer.len())
))?
};
assert_eq!(len, buffer.len());
return Ok(buffer);
}
/// On non-Mustang platforms, we read the aux vector via the `prctl`
/// `PR_GET_AUXV`, with a fallback to /proc/self/auxv for kernels that don't
/// support `PR_GET_AUXV`.
#[cold]
fn init_auxv() {
match pr_get_auxv() {
Ok(buffer) => {
// SAFETY: We assume the kernel returns a valid auxv.
unsafe {
init_from_auxp(buffer.as_ptr().cast());
}
return;
}
Err(_) => {
// Fall back to /proc/self/auxv on error.
}
}
// Open "/proc/self/auxv", either because we trust "/proc", or because
// we're running inside QEMU and `proc_self_auxv`'s extra checking foils
// QEMU's emulation so we need to do a plain open to get the right
// auxv records.
let file = crate::fs::open("/proc/self/auxv", OFlags::RDONLY, Mode::empty()).unwrap();
let _ = init_from_auxv_file(file);
}
/// Process auxv entries from the open file `auxv`.
#[cold]
fn init_from_auxv_file(auxv: OwnedFd) -> Option<()> {
let mut buffer = Vec::<u8>::with_capacity(512);
loop {
let cur = buffer.len();
// Request one extra byte; `Vec` will often allocate more.
buffer.reserve(1);
// Use all the space it allocated.
buffer.resize(buffer.capacity(), 0);
// Read up to that many bytes.
let n = match crate::io::read(&auxv, &mut buffer[cur..]) {
Err(crate::io::Errno::INTR) => 0,
Err(_err) => panic!(),
Ok(0) => break,
Ok(n) => n,
};
// Account for the number of bytes actually read.
buffer.resize(cur + n, 0_u8);
}
// SAFETY: We loaded from an auxv file into the buffer.
unsafe { init_from_auxp(buffer.as_ptr().cast()) }
}
/// Process auxv entries from the auxv array pointed to by `auxp`.
///
/// # Safety
///
/// This must be passed a pointer to an auxv array.
///
/// The buffer contains `Elf_aux_t` elements, though it need not be aligned;
/// function uses `read_unaligned` to read from it.
#[cold]
unsafe fn init_from_auxp(mut auxp: *const Elf_auxv_t) -> Option<()> {
let mut pagesz = 0;
let mut clktck = 0;
let mut hwcap = 0;
let mut hwcap2 = 0;
let mut phdr = null_mut();
let mut phnum = 0;
let mut execfn = null_mut();
let mut sysinfo_ehdr = null_mut();
let mut phent = 0;
loop {
let Elf_auxv_t { a_type, a_val } = read_unaligned(auxp);
match a_type as _ {
AT_PAGESZ => pagesz = a_val as usize,
AT_CLKTCK => clktck = a_val as usize,
AT_HWCAP => hwcap = a_val as usize,
AT_HWCAP2 => hwcap2 = a_val as usize,
AT_PHDR => phdr = check_raw_pointer::<Elf_Phdr>(a_val as *mut _)?.as_ptr(),
AT_PHNUM => phnum = a_val as usize,
AT_PHENT => phent = a_val as usize,
AT_EXECFN => execfn = check_raw_pointer::<c::c_char>(a_val as *mut _)?.as_ptr(),
AT_BASE => check_interpreter_base(a_val.cast())?,
AT_SYSINFO_EHDR => sysinfo_ehdr = check_vdso_base(a_val as *mut _)?.as_ptr(),
AT_NULL => break,
_ => (),
}
auxp = auxp.add(1);
}
assert_eq!(phent, size_of::<Elf_Phdr>());
// The base and sysinfo_ehdr (if present) matches our platform. Accept
// the aux values.
PAGE_SIZE.store(pagesz, Relaxed);
CLOCK_TICKS_PER_SECOND.store(clktck, Relaxed);
HWCAP.store(hwcap, Relaxed);
HWCAP2.store(hwcap2, Relaxed);
PHDR.store(phdr, Relaxed);
PHNUM.store(phnum, Relaxed);
EXECFN.store(execfn, Relaxed);
SYSINFO_EHDR.store(sysinfo_ehdr, Relaxed);
Some(())
}
/// Check that `base` is a valid pointer to the program interpreter.
///
/// `base` is some value we got from a `AT_BASE` aux record somewhere,
/// which hopefully holds the value of the program interpreter in memory. Do a
/// series of checks to be as sure as we can that it's safe to use.
#[cold]
unsafe fn check_interpreter_base(base: *const Elf_Ehdr) -> Option<()> {
check_elf_base(base)?;
Some(())
}
/// Check that `base` is a valid pointer to the kernel-provided vDSO.
///
/// `base` is some value we got from a `AT_SYSINFO_EHDR` aux record somewhere,
/// which hopefully holds the value of the kernel-provided vDSO in memory. Do a
/// series of checks to be as sure as we can that it's safe to use.
#[cold]
unsafe fn check_vdso_base(base: *const Elf_Ehdr) -> Option<NonNull<Elf_Ehdr>> {
// In theory, we could check that we're not attempting to parse our own ELF
// image, as an additional check. However, older Linux toolchains don't
// support this, and Rust's `#[linkage = "extern_weak"]` isn't stable yet,
// so just disable this for now.
/*
{
extern "C" {
static __ehdr_start: c::c_void;
}
let ehdr_start: *const c::c_void = &__ehdr_start;
if base == ehdr_start {
return None;
}
}
*/
let hdr = check_elf_base(base)?;
// Check that the ELF is not writable, since that would indicate that this
// isn't the ELF we think it is. Here we're just using `clock_getres` just
// as an arbitrary system call which writes to a buffer and fails with
// `EFAULT` if the buffer is not writable.
{
use crate::backend::conv::{c_uint, ret};
if ret(syscall!(
__NR_clock_getres,
c_uint(linux_raw_sys::general::CLOCK_MONOTONIC),
base
)) != Err(crate::io::Errno::FAULT)
{
// We can't gracefully fail here because we would seem to have just
// mutated some unknown memory.
#[cfg(feature = "std")]
{
std::process::abort();
}
#[cfg(all(not(feature = "std"), feature = "rustc-dep-of-std"))]
{
core::intrinsics::abort();
}
}
}
Some(hdr)
}
/// Check that `base` is a valid pointer to an ELF image.
#[cold]
unsafe fn check_elf_base(base: *const Elf_Ehdr) -> Option<NonNull<Elf_Ehdr>> {
// If we're reading a 64-bit auxv on a 32-bit platform, we'll see
// a zero `a_val` because `AT_*` values are never greater than
// `u32::MAX`. Zero is used by libc's `getauxval` to indicate
// errors, so it should never be a valid value.
if base.is_null() {
return None;
}
let hdr = match check_raw_pointer::<Elf_Ehdr>(base as *mut _) {
Some(hdr) => hdr,
None => return None,
};
let hdr = hdr.as_ref();
if hdr.e_ident[..SELFMAG] != ELFMAG {
return None; // Wrong ELF magic
}
if !matches!(hdr.e_ident[EI_OSABI], ELFOSABI_SYSV | ELFOSABI_LINUX) {
return None; // Unrecognized ELF OS ABI
}
if hdr.e_ident[EI_ABIVERSION] != ELFABIVERSION {
return None; // Unrecognized ELF ABI version
}
if hdr.e_type != ET_DYN {
return None; // Wrong ELF type
}
// If ELF is extended, we'll need to adjust.
if hdr.e_ident[EI_VERSION] != EV_CURRENT
|| hdr.e_ehsize as usize != size_of::<Elf_Ehdr>()
|| hdr.e_phentsize as usize != size_of::<Elf_Phdr>()
{
return None;
}
// We don't currently support extra-large numbers of segments.
if hdr.e_phnum == PN_XNUM {
return None;
}
// If `e_phoff` is zero, it's more likely that we're looking at memory that
// has been zeroed than that the kernel has somehow aliased the `Ehdr` and
// the `Phdr`.
if hdr.e_phoff < size_of::<Elf_Ehdr>() {
return None;
}
// Verify that the `EI_CLASS`/`EI_DATA`/`e_machine` fields match the
// architecture we're running as. This helps catch cases where we're
// running under QEMU.
if hdr.e_ident[EI_CLASS] != ELFCLASS {
return None; // Wrong ELF class
}
if hdr.e_ident[EI_DATA] != ELFDATA {
return None; // Wrong ELF data
}
if hdr.e_machine != EM_CURRENT {
return None; // Wrong machine type
}
Some(NonNull::new_unchecked(as_ptr(hdr) as *mut _))
}
// ELF ABI
#[repr(C)]
#[derive(Copy, Clone)]
struct Elf_auxv_t {
a_type: usize,
// Some of the values in the auxv array are pointers, so we make `a_val` a
// pointer, in order to preserve their provenance. For the values which are
// integers, we cast this to `usize`.
a_val: *const c_void,
}