blob: f86f8e5b92f40bbe83d21fea8590010df7a5933d [file] [log] [blame]
//! linux_raw syscalls supporting `rustix::process`.
//!
//! # Safety
//!
//! See the `rustix::backend` module documentation for details.
#![allow(unsafe_code)]
#![allow(clippy::undocumented_unsafe_blocks)]
use super::super::c;
use super::super::conv::{
by_mut, by_ref, c_int, c_uint, negative_pid, pass_usize, ret, ret_c_int, ret_c_uint,
ret_infallible, ret_usize, ret_usize_infallible, size_of, slice_just_addr, slice_mut, zero,
};
use super::types::{RawCpuSet, RawUname};
use crate::backend::conv::ret_owned_fd;
use crate::fd::{AsRawFd, BorrowedFd, OwnedFd};
use crate::ffi::CStr;
use crate::io;
use crate::process::{
Cpuid, Gid, MembarrierCommand, MembarrierQuery, Pid, PidfdFlags, RawNonZeroPid, RawPid,
Resource, Rlimit, Signal, Uid, WaitId, WaitOptions, WaitStatus, WaitidOptions, WaitidStatus,
};
use core::convert::TryInto;
use core::mem::MaybeUninit;
use core::num::NonZeroU32;
use core::ptr::{null, null_mut};
use linux_raw_sys::general::{
__kernel_gid_t, __kernel_pid_t, __kernel_uid_t, membarrier_cmd, membarrier_cmd_flag, rlimit,
rlimit64, PRIO_PGRP, PRIO_PROCESS, PRIO_USER, RLIM64_INFINITY, RLIM_INFINITY,
};
#[cfg(not(target_os = "wasi"))]
#[cfg(feature = "fs")]
use {super::super::conv::ret_c_uint_infallible, crate::fs::Mode};
#[inline]
pub(crate) fn chdir(filename: &CStr) -> io::Result<()> {
unsafe { ret(syscall_readonly!(__NR_chdir, filename)) }
}
#[inline]
pub(crate) fn fchdir(fd: BorrowedFd<'_>) -> io::Result<()> {
unsafe { ret(syscall_readonly!(__NR_fchdir, fd)) }
}
#[inline]
pub(crate) fn getcwd(buf: &mut [u8]) -> io::Result<usize> {
let (buf_addr_mut, buf_len) = slice_mut(buf);
unsafe { ret_usize(syscall!(__NR_getcwd, buf_addr_mut, buf_len)) }
}
#[inline]
pub(crate) fn membarrier_query() -> MembarrierQuery {
unsafe {
match ret_c_uint(syscall!(
__NR_membarrier,
c_int(membarrier_cmd::MEMBARRIER_CMD_QUERY as _),
c_uint(0)
)) {
Ok(query) => {
// SAFETY: The safety of `from_bits_unchecked` is discussed
// [here]. Our "source of truth" is Linux, and here, the
// `query` value is coming from Linux, so we know it only
// contains "source of truth" valid bits.
//
// [here]: https://github.com/bitflags/bitflags/pull/207#issuecomment-671668662
MembarrierQuery::from_bits_unchecked(query)
}
Err(_) => MembarrierQuery::empty(),
}
}
}
#[inline]
pub(crate) fn membarrier(cmd: MembarrierCommand) -> io::Result<()> {
unsafe { ret(syscall!(__NR_membarrier, cmd, c_uint(0))) }
}
#[inline]
pub(crate) fn membarrier_cpu(cmd: MembarrierCommand, cpu: Cpuid) -> io::Result<()> {
unsafe {
ret(syscall!(
__NR_membarrier,
cmd,
c_uint(membarrier_cmd_flag::MEMBARRIER_CMD_FLAG_CPU as _),
cpu
))
}
}
#[inline]
pub(crate) fn getpid() -> Pid {
unsafe {
let pid: i32 = ret_usize_infallible(syscall_readonly!(__NR_getpid)) as __kernel_pid_t;
debug_assert!(pid > 0);
Pid::from_raw_nonzero(RawNonZeroPid::new_unchecked(pid as u32))
}
}
#[inline]
pub(crate) fn getppid() -> Option<Pid> {
unsafe {
let ppid: i32 = ret_usize_infallible(syscall_readonly!(__NR_getppid)) as __kernel_pid_t;
Pid::from_raw(ppid as u32)
}
}
#[inline]
pub(crate) fn getpgid(pid: Option<Pid>) -> io::Result<Pid> {
unsafe {
let pgid: i32 =
ret_usize(syscall_readonly!(__NR_getpgid, c_uint(Pid::as_raw(pid))))? as __kernel_pid_t;
Ok(Pid::from_raw_nonzero(NonZeroU32::new_unchecked(
pgid as u32,
)))
}
}
#[inline]
pub(crate) fn getpgrp() -> Pid {
// Use the `getpgrp` syscall if available.
#[cfg(not(any(target_arch = "aarch64", target_arch = "riscv64")))]
unsafe {
let pgid: i32 = ret_usize_infallible(syscall_readonly!(__NR_getpgrp)) as __kernel_pid_t;
debug_assert!(pgid > 0);
Pid::from_raw_nonzero(RawNonZeroPid::new_unchecked(pgid as u32))
}
// Otherwise use `getpgrp` and pass it zero.
#[cfg(any(target_arch = "aarch64", target_arch = "riscv64"))]
unsafe {
let pgid: i32 =
ret_usize_infallible(syscall_readonly!(__NR_getpgid, c_uint(0))) as __kernel_pid_t;
debug_assert!(pgid > 0);
Pid::from_raw_nonzero(RawNonZeroPid::new_unchecked(pgid as u32))
}
}
#[inline]
pub(crate) fn getgid() -> Gid {
#[cfg(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm"))]
unsafe {
let gid: i32 =
(ret_usize_infallible(syscall_readonly!(__NR_getgid32)) as __kernel_gid_t).into();
Gid::from_raw(gid as u32)
}
#[cfg(not(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm")))]
unsafe {
let gid = ret_usize_infallible(syscall_readonly!(__NR_getgid)) as __kernel_gid_t;
Gid::from_raw(gid as u32)
}
}
#[inline]
pub(crate) fn getegid() -> Gid {
#[cfg(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm"))]
unsafe {
let gid: i32 =
(ret_usize_infallible(syscall_readonly!(__NR_getegid32)) as __kernel_gid_t).into();
Gid::from_raw(gid as u32)
}
#[cfg(not(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm")))]
unsafe {
let gid = ret_usize_infallible(syscall_readonly!(__NR_getegid)) as __kernel_gid_t;
Gid::from_raw(gid as u32)
}
}
#[inline]
pub(crate) fn getuid() -> Uid {
#[cfg(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm"))]
unsafe {
let uid = (ret_usize_infallible(syscall_readonly!(__NR_getuid32)) as __kernel_uid_t).into();
Uid::from_raw(uid)
}
#[cfg(not(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm")))]
unsafe {
let uid = ret_usize_infallible(syscall_readonly!(__NR_getuid)) as __kernel_uid_t;
Uid::from_raw(uid as u32)
}
}
#[inline]
pub(crate) fn geteuid() -> Uid {
#[cfg(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm"))]
unsafe {
let uid: i32 =
(ret_usize_infallible(syscall_readonly!(__NR_geteuid32)) as __kernel_uid_t).into();
Uid::from_raw(uid as u32)
}
#[cfg(not(any(target_arch = "x86", target_arch = "sparc", target_arch = "arm")))]
unsafe {
let uid = ret_usize_infallible(syscall_readonly!(__NR_geteuid)) as __kernel_uid_t;
Uid::from_raw(uid as u32)
}
}
#[inline]
pub(crate) fn sched_getaffinity(pid: Option<Pid>, cpuset: &mut RawCpuSet) -> io::Result<()> {
unsafe {
// The raw linux syscall returns the size (in bytes) of the `cpumask_t`
// data type that is used internally by the kernel to represent the CPU
// set bit mask.
let size = ret_usize(syscall!(
__NR_sched_getaffinity,
c_uint(Pid::as_raw(pid)),
size_of::<RawCpuSet, _>(),
by_mut(&mut cpuset.bits)
))?;
let bytes = (cpuset as *mut RawCpuSet).cast::<u8>();
let rest = bytes.wrapping_add(size);
// Zero every byte in the cpuset not set by the kernel.
rest.write_bytes(0, core::mem::size_of::<RawCpuSet>() - size);
Ok(())
}
}
#[inline]
pub(crate) fn sched_setaffinity(pid: Option<Pid>, cpuset: &RawCpuSet) -> io::Result<()> {
unsafe {
ret(syscall_readonly!(
__NR_sched_setaffinity,
c_uint(Pid::as_raw(pid)),
size_of::<RawCpuSet, _>(),
slice_just_addr(&cpuset.bits)
))
}
}
#[inline]
pub(crate) fn sched_yield() {
unsafe {
// See the documentation for [`crate::process::sched_yield`] for why
// errors are ignored.
syscall_readonly!(__NR_sched_yield).decode_void();
}
}
#[inline]
pub(crate) fn uname() -> RawUname {
let mut uname = MaybeUninit::<RawUname>::uninit();
unsafe {
ret_infallible(syscall!(__NR_uname, &mut uname));
uname.assume_init()
}
}
#[cfg(feature = "fs")]
#[inline]
pub(crate) fn umask(mode: Mode) -> Mode {
unsafe {
// TODO: Use `from_bits_retain` when we switch to bitflags 2.0.
Mode::from_bits_truncate(ret_c_uint_infallible(syscall_readonly!(__NR_umask, mode)))
}
}
#[inline]
pub(crate) fn nice(inc: i32) -> io::Result<i32> {
let priority = if inc > -40 && inc < 40 {
inc + getpriority_process(None)?
} else {
inc
}
// TODO: With Rust 1.50, use `.clamp` instead of `.min` and `.max`.
//.clamp(-20, 19);
.min(19)
.max(-20);
setpriority_process(None, priority)?;
Ok(priority)
}
#[inline]
pub(crate) fn getpriority_user(uid: Uid) -> io::Result<i32> {
unsafe {
Ok(20
- ret_c_int(syscall_readonly!(
__NR_getpriority,
c_uint(PRIO_USER),
c_uint(uid.as_raw())
))?)
}
}
#[inline]
pub(crate) fn getpriority_pgrp(pgid: Option<Pid>) -> io::Result<i32> {
unsafe {
Ok(20
- ret_c_int(syscall_readonly!(
__NR_getpriority,
c_uint(PRIO_PGRP),
c_uint(Pid::as_raw(pgid))
))?)
}
}
#[inline]
pub(crate) fn getpriority_process(pid: Option<Pid>) -> io::Result<i32> {
unsafe {
Ok(20
- ret_c_int(syscall_readonly!(
__NR_getpriority,
c_uint(PRIO_PROCESS),
c_uint(Pid::as_raw(pid))
))?)
}
}
#[inline]
pub(crate) fn setpriority_user(uid: Uid, priority: i32) -> io::Result<()> {
unsafe {
ret(syscall_readonly!(
__NR_setpriority,
c_uint(PRIO_USER),
c_uint(uid.as_raw()),
c_int(priority)
))
}
}
#[inline]
pub(crate) fn setpriority_pgrp(pgid: Option<Pid>, priority: i32) -> io::Result<()> {
unsafe {
ret(syscall_readonly!(
__NR_setpriority,
c_uint(PRIO_PGRP),
c_uint(Pid::as_raw(pgid)),
c_int(priority)
))
}
}
#[inline]
pub(crate) fn setpriority_process(pid: Option<Pid>, priority: i32) -> io::Result<()> {
unsafe {
ret(syscall_readonly!(
__NR_setpriority,
c_uint(PRIO_PROCESS),
c_uint(Pid::as_raw(pid)),
c_int(priority)
))
}
}
#[inline]
pub(crate) fn getrlimit(limit: Resource) -> Rlimit {
let mut result = MaybeUninit::<rlimit64>::uninit();
unsafe {
match ret(syscall!(
__NR_prlimit64,
c_uint(0),
limit,
null::<c::c_void>(),
&mut result
)) {
Ok(()) => rlimit_from_linux(result.assume_init()),
Err(err) => {
debug_assert_eq!(err, io::Errno::NOSYS);
getrlimit_old(limit)
}
}
}
}
/// The old 32-bit-only `getrlimit` syscall, for when we lack the new
/// `prlimit64`.
unsafe fn getrlimit_old(limit: Resource) -> Rlimit {
let mut result = MaybeUninit::<rlimit>::uninit();
// On these platforms, `__NR_getrlimit` is called `__NR_ugetrlimit`.
#[cfg(any(
target_arch = "arm",
target_arch = "powerpc",
target_arch = "powerpc64",
target_arch = "x86",
))]
{
ret_infallible(syscall!(__NR_ugetrlimit, limit, &mut result));
}
// On these platforms, it's just `__NR_getrlimit`.
#[cfg(not(any(
target_arch = "arm",
target_arch = "powerpc",
target_arch = "powerpc64",
target_arch = "x86",
)))]
{
ret_infallible(syscall!(__NR_getrlimit, limit, &mut result));
}
rlimit_from_linux_old(result.assume_init())
}
#[inline]
pub(crate) fn setrlimit(limit: Resource, new: Rlimit) -> io::Result<()> {
unsafe {
let lim = rlimit_to_linux(new.clone());
match ret(syscall_readonly!(
__NR_prlimit64,
c_uint(0),
limit,
by_ref(&lim),
null_mut::<c::c_void>()
)) {
Ok(()) => Ok(()),
Err(io::Errno::NOSYS) => setrlimit_old(limit, new),
Err(err) => Err(err),
}
}
}
/// The old 32-bit-only `setrlimit` syscall, for when we lack the new
/// `prlimit64`.
unsafe fn setrlimit_old(limit: Resource, new: Rlimit) -> io::Result<()> {
let lim = rlimit_to_linux_old(new)?;
ret(syscall_readonly!(__NR_setrlimit, limit, by_ref(&lim)))
}
#[inline]
pub(crate) fn prlimit(pid: Option<Pid>, limit: Resource, new: Rlimit) -> io::Result<Rlimit> {
let lim = rlimit_to_linux(new);
let mut result = MaybeUninit::<rlimit64>::uninit();
unsafe {
match ret(syscall!(
__NR_prlimit64,
c_uint(Pid::as_raw(pid)),
limit,
by_ref(&lim),
&mut result
)) {
Ok(()) => Ok(rlimit_from_linux(result.assume_init())),
Err(err) => Err(err),
}
}
}
/// Convert a Rust [`Rlimit`] to a C `rlimit64`.
#[inline]
fn rlimit_from_linux(lim: rlimit64) -> Rlimit {
let current = if lim.rlim_cur == RLIM64_INFINITY as _ {
None
} else {
Some(lim.rlim_cur)
};
let maximum = if lim.rlim_max == RLIM64_INFINITY as _ {
None
} else {
Some(lim.rlim_max)
};
Rlimit { current, maximum }
}
/// Convert a C `rlimit64` to a Rust `Rlimit`.
#[inline]
fn rlimit_to_linux(lim: Rlimit) -> rlimit64 {
let rlim_cur = match lim.current {
Some(r) => r,
None => RLIM64_INFINITY as _,
};
let rlim_max = match lim.maximum {
Some(r) => r,
None => RLIM64_INFINITY as _,
};
rlimit64 { rlim_cur, rlim_max }
}
/// Like `rlimit_from_linux` but uses Linux's old 32-bit `rlimit`.
#[allow(clippy::useless_conversion)]
fn rlimit_from_linux_old(lim: rlimit) -> Rlimit {
let current = if lim.rlim_cur == RLIM_INFINITY as _ {
None
} else {
Some(lim.rlim_cur.into())
};
let maximum = if lim.rlim_max == RLIM_INFINITY as _ {
None
} else {
Some(lim.rlim_max.into())
};
Rlimit { current, maximum }
}
/// Like `rlimit_to_linux` but uses Linux's old 32-bit `rlimit`.
#[allow(clippy::useless_conversion)]
fn rlimit_to_linux_old(lim: Rlimit) -> io::Result<rlimit> {
let rlim_cur = match lim.current {
Some(r) => r.try_into().map_err(|_e| io::Errno::INVAL)?,
None => RLIM_INFINITY as _,
};
let rlim_max = match lim.maximum {
Some(r) => r.try_into().map_err(|_e| io::Errno::INVAL)?,
None => RLIM_INFINITY as _,
};
Ok(rlimit { rlim_cur, rlim_max })
}
#[inline]
pub(crate) fn wait(waitopts: WaitOptions) -> io::Result<Option<(Pid, WaitStatus)>> {
_waitpid(!0, waitopts)
}
#[inline]
pub(crate) fn waitpid(
pid: Option<Pid>,
waitopts: WaitOptions,
) -> io::Result<Option<(Pid, WaitStatus)>> {
_waitpid(Pid::as_raw(pid), waitopts)
}
#[inline]
pub(crate) fn _waitpid(
pid: RawPid,
waitopts: WaitOptions,
) -> io::Result<Option<(Pid, WaitStatus)>> {
unsafe {
let mut status = MaybeUninit::<u32>::uninit();
let pid = ret_c_uint(syscall!(
__NR_wait4,
c_int(pid as _),
&mut status,
c_int(waitopts.bits() as _),
zero()
))?;
Ok(RawNonZeroPid::new(pid).map(|non_zero| {
(
Pid::from_raw_nonzero(non_zero),
WaitStatus::new(status.assume_init()),
)
}))
}
}
#[inline]
pub(crate) fn waitid(id: WaitId<'_>, options: WaitidOptions) -> io::Result<Option<WaitidStatus>> {
// Get the id to wait on.
match id {
WaitId::All => _waitid_all(options),
WaitId::Pid(pid) => _waitid_pid(pid, options),
WaitId::PidFd(fd) => _waitid_pidfd(fd, options),
}
}
#[inline]
fn _waitid_all(options: WaitidOptions) -> io::Result<Option<WaitidStatus>> {
let mut status = MaybeUninit::<c::siginfo_t>::uninit();
unsafe {
ret(syscall!(
__NR_waitid,
c_uint(c::P_ALL),
c_uint(0),
by_mut(&mut status),
c_int(options.bits() as _),
zero()
))?
};
Ok(unsafe { cvt_waitid_status(status) })
}
#[inline]
fn _waitid_pid(pid: Pid, options: WaitidOptions) -> io::Result<Option<WaitidStatus>> {
let mut status = MaybeUninit::<c::siginfo_t>::uninit();
unsafe {
ret(syscall!(
__NR_waitid,
c_uint(c::P_PID),
c_uint(Pid::as_raw(Some(pid))),
by_mut(&mut status),
c_int(options.bits() as _),
zero()
))?
};
Ok(unsafe { cvt_waitid_status(status) })
}
#[inline]
fn _waitid_pidfd(fd: BorrowedFd<'_>, options: WaitidOptions) -> io::Result<Option<WaitidStatus>> {
let mut status = MaybeUninit::<c::siginfo_t>::uninit();
unsafe {
ret(syscall!(
__NR_waitid,
c_uint(c::P_PIDFD),
c_uint(fd.as_raw_fd() as _),
by_mut(&mut status),
c_int(options.bits() as _),
zero()
))?
};
Ok(unsafe { cvt_waitid_status(status) })
}
/// Convert a `siginfo_t` to a `WaitidStatus`.
///
/// # Safety
///
/// The caller must ensure that `status` is initialized and that `waitid`
/// returned successfully.
#[inline]
unsafe fn cvt_waitid_status(status: MaybeUninit<c::siginfo_t>) -> Option<WaitidStatus> {
let status = status.assume_init();
if status.__bindgen_anon_1.__bindgen_anon_1.si_signo == 0 {
None
} else {
Some(WaitidStatus(status))
}
}
#[cfg(feature = "runtime")]
#[inline]
pub(crate) fn exit_group(code: c::c_int) -> ! {
unsafe { syscall_noreturn!(__NR_exit_group, c_int(code)) }
}
#[inline]
pub(crate) fn setsid() -> io::Result<Pid> {
unsafe {
let pid = ret_usize(syscall_readonly!(__NR_setsid))?;
debug_assert!(pid > 0);
Ok(Pid::from_raw_nonzero(RawNonZeroPid::new_unchecked(
pid as u32,
)))
}
}
#[inline]
pub(crate) fn kill_process(pid: Pid, sig: Signal) -> io::Result<()> {
unsafe { ret(syscall_readonly!(__NR_kill, pid, sig)) }
}
#[inline]
pub(crate) fn kill_process_group(pid: Pid, sig: Signal) -> io::Result<()> {
unsafe { ret(syscall_readonly!(__NR_kill, negative_pid(pid), sig)) }
}
#[inline]
pub(crate) fn kill_current_process_group(sig: Signal) -> io::Result<()> {
unsafe { ret(syscall_readonly!(__NR_kill, pass_usize(0), sig)) }
}
#[inline]
pub(crate) unsafe fn prctl(
option: c::c_int,
arg2: *mut c::c_void,
arg3: *mut c::c_void,
arg4: *mut c::c_void,
arg5: *mut c::c_void,
) -> io::Result<c::c_int> {
ret_c_int(syscall!(__NR_prctl, c_int(option), arg2, arg3, arg4, arg5))
}
#[inline]
pub(crate) fn pidfd_open(pid: Pid, flags: PidfdFlags) -> io::Result<OwnedFd> {
unsafe {
ret_owned_fd(syscall_readonly!(
__NR_pidfd_open,
pid,
c_int(flags.bits() as _)
))
}
}