blob: 1ce3641fca5b3ff4c7690bbcdcbc3eccc2594f7f [file] [log] [blame]
use crate::common::{Format, SectionId};
use crate::constants;
use crate::endianity::Endianity;
use crate::leb128;
use crate::write::{Address, Error, Result};
/// A trait for writing the data to a DWARF section.
///
/// All write operations append to the section unless otherwise specified.
#[allow(clippy::len_without_is_empty)]
pub trait Writer {
/// The endianity of bytes that are written.
type Endian: Endianity;
/// Return the endianity of bytes that are written.
fn endian(&self) -> Self::Endian;
/// Return the current section length.
///
/// This may be used as an offset for future `write_at` calls.
fn len(&self) -> usize;
/// Write a slice.
fn write(&mut self, bytes: &[u8]) -> Result<()>;
/// Write a slice at a given offset.
///
/// The write must not extend past the current section length.
fn write_at(&mut self, offset: usize, bytes: &[u8]) -> Result<()>;
/// Write an address.
///
/// If the writer supports relocations, then it must provide its own implementation
/// of this method.
// TODO: use write_reference instead?
fn write_address(&mut self, address: Address, size: u8) -> Result<()> {
match address {
Address::Constant(val) => self.write_udata(val, size),
Address::Symbol { .. } => Err(Error::InvalidAddress),
}
}
/// Write an address with a `.eh_frame` pointer encoding.
///
/// The given size is only used for `DW_EH_PE_absptr` formats.
///
/// If the writer supports relocations, then it must provide its own implementation
/// of this method.
fn write_eh_pointer(
&mut self,
address: Address,
eh_pe: constants::DwEhPe,
size: u8,
) -> Result<()> {
match address {
Address::Constant(val) => {
// Indirect doesn't matter here.
let val = match eh_pe.application() {
constants::DW_EH_PE_absptr => val,
constants::DW_EH_PE_pcrel => {
// TODO: better handling of sign
let offset = self.len() as u64;
val.wrapping_sub(offset)
}
_ => {
return Err(Error::UnsupportedPointerEncoding(eh_pe));
}
};
self.write_eh_pointer_data(val, eh_pe.format(), size)
}
Address::Symbol { .. } => Err(Error::InvalidAddress),
}
}
/// Write a value with a `.eh_frame` pointer format.
///
/// The given size is only used for `DW_EH_PE_absptr` formats.
///
/// This must not be used directly for values that may require relocation.
fn write_eh_pointer_data(
&mut self,
val: u64,
format: constants::DwEhPe,
size: u8,
) -> Result<()> {
match format {
constants::DW_EH_PE_absptr => self.write_udata(val, size),
constants::DW_EH_PE_uleb128 => self.write_uleb128(val),
constants::DW_EH_PE_udata2 => self.write_udata(val, 2),
constants::DW_EH_PE_udata4 => self.write_udata(val, 4),
constants::DW_EH_PE_udata8 => self.write_udata(val, 8),
constants::DW_EH_PE_sleb128 => self.write_sleb128(val as i64),
constants::DW_EH_PE_sdata2 => self.write_sdata(val as i64, 2),
constants::DW_EH_PE_sdata4 => self.write_sdata(val as i64, 4),
constants::DW_EH_PE_sdata8 => self.write_sdata(val as i64, 8),
_ => Err(Error::UnsupportedPointerEncoding(format)),
}
}
/// Write an offset that is relative to the start of the given section.
///
/// If the writer supports relocations, then it must provide its own implementation
/// of this method.
fn write_offset(&mut self, val: usize, _section: SectionId, size: u8) -> Result<()> {
self.write_udata(val as u64, size)
}
/// Write an offset that is relative to the start of the given section.
///
/// If the writer supports relocations, then it must provide its own implementation
/// of this method.
fn write_offset_at(
&mut self,
offset: usize,
val: usize,
_section: SectionId,
size: u8,
) -> Result<()> {
self.write_udata_at(offset, val as u64, size)
}
/// Write a reference to a symbol.
///
/// If the writer supports symbols, then it must provide its own implementation
/// of this method.
fn write_reference(&mut self, _symbol: usize, _size: u8) -> Result<()> {
Err(Error::InvalidReference)
}
/// Write a u8.
fn write_u8(&mut self, val: u8) -> Result<()> {
let bytes = [val];
self.write(&bytes)
}
/// Write a u16.
fn write_u16(&mut self, val: u16) -> Result<()> {
let mut bytes = [0; 2];
self.endian().write_u16(&mut bytes, val);
self.write(&bytes)
}
/// Write a u32.
fn write_u32(&mut self, val: u32) -> Result<()> {
let mut bytes = [0; 4];
self.endian().write_u32(&mut bytes, val);
self.write(&bytes)
}
/// Write a u64.
fn write_u64(&mut self, val: u64) -> Result<()> {
let mut bytes = [0; 8];
self.endian().write_u64(&mut bytes, val);
self.write(&bytes)
}
/// Write a u8 at the given offset.
fn write_u8_at(&mut self, offset: usize, val: u8) -> Result<()> {
let bytes = [val];
self.write_at(offset, &bytes)
}
/// Write a u16 at the given offset.
fn write_u16_at(&mut self, offset: usize, val: u16) -> Result<()> {
let mut bytes = [0; 2];
self.endian().write_u16(&mut bytes, val);
self.write_at(offset, &bytes)
}
/// Write a u32 at the given offset.
fn write_u32_at(&mut self, offset: usize, val: u32) -> Result<()> {
let mut bytes = [0; 4];
self.endian().write_u32(&mut bytes, val);
self.write_at(offset, &bytes)
}
/// Write a u64 at the given offset.
fn write_u64_at(&mut self, offset: usize, val: u64) -> Result<()> {
let mut bytes = [0; 8];
self.endian().write_u64(&mut bytes, val);
self.write_at(offset, &bytes)
}
/// Write unsigned data of the given size.
///
/// Returns an error if the value is too large for the size.
/// This must not be used directly for values that may require relocation.
fn write_udata(&mut self, val: u64, size: u8) -> Result<()> {
match size {
1 => {
let write_val = val as u8;
if val != u64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u8(write_val)
}
2 => {
let write_val = val as u16;
if val != u64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u16(write_val)
}
4 => {
let write_val = val as u32;
if val != u64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u32(write_val)
}
8 => self.write_u64(val),
otherwise => Err(Error::UnsupportedWordSize(otherwise)),
}
}
/// Write signed data of the given size.
///
/// Returns an error if the value is too large for the size.
/// This must not be used directly for values that may require relocation.
fn write_sdata(&mut self, val: i64, size: u8) -> Result<()> {
match size {
1 => {
let write_val = val as i8;
if val != i64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u8(write_val as u8)
}
2 => {
let write_val = val as i16;
if val != i64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u16(write_val as u16)
}
4 => {
let write_val = val as i32;
if val != i64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u32(write_val as u32)
}
8 => self.write_u64(val as u64),
otherwise => Err(Error::UnsupportedWordSize(otherwise)),
}
}
/// Write a word of the given size at the given offset.
///
/// Returns an error if the value is too large for the size.
/// This must not be used directly for values that may require relocation.
fn write_udata_at(&mut self, offset: usize, val: u64, size: u8) -> Result<()> {
match size {
1 => {
let write_val = val as u8;
if val != u64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u8_at(offset, write_val)
}
2 => {
let write_val = val as u16;
if val != u64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u16_at(offset, write_val)
}
4 => {
let write_val = val as u32;
if val != u64::from(write_val) {
return Err(Error::ValueTooLarge);
}
self.write_u32_at(offset, write_val)
}
8 => self.write_u64_at(offset, val),
otherwise => Err(Error::UnsupportedWordSize(otherwise)),
}
}
/// Write an unsigned LEB128 encoded integer.
fn write_uleb128(&mut self, val: u64) -> Result<()> {
let mut bytes = [0u8; 10];
// bytes is long enough so this will never fail.
let len = leb128::write::unsigned(&mut { &mut bytes[..] }, val).unwrap();
self.write(&bytes[..len])
}
/// Read an unsigned LEB128 encoded integer.
fn write_sleb128(&mut self, val: i64) -> Result<()> {
let mut bytes = [0u8; 10];
// bytes is long enough so this will never fail.
let len = leb128::write::signed(&mut { &mut bytes[..] }, val).unwrap();
self.write(&bytes[..len])
}
/// Write an initial length according to the given DWARF format.
///
/// This will only write a length of zero, since the length isn't
/// known yet, and a subsequent call to `write_initial_length_at`
/// will write the actual length.
fn write_initial_length(&mut self, format: Format) -> Result<InitialLengthOffset> {
if format == Format::Dwarf64 {
self.write_u32(0xffff_ffff)?;
}
let offset = InitialLengthOffset(self.len());
self.write_udata(0, format.word_size())?;
Ok(offset)
}
/// Write an initial length at the given offset according to the given DWARF format.
///
/// `write_initial_length` must have previously returned the offset.
fn write_initial_length_at(
&mut self,
offset: InitialLengthOffset,
length: u64,
format: Format,
) -> Result<()> {
self.write_udata_at(offset.0, length, format.word_size())
}
}
/// The offset at which an initial length should be written.
#[derive(Debug, Clone, Copy)]
pub struct InitialLengthOffset(usize);
#[cfg(test)]
mod tests {
use super::*;
use crate::write;
use crate::{BigEndian, LittleEndian};
use std::{i64, u64};
#[test]
fn test_writer() {
let mut w = write::EndianVec::new(LittleEndian);
w.write_address(Address::Constant(0x1122_3344), 4).unwrap();
assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]);
assert_eq!(
w.write_address(
Address::Symbol {
symbol: 0,
addend: 0
},
4
),
Err(Error::InvalidAddress)
);
let mut w = write::EndianVec::new(LittleEndian);
w.write_offset(0x1122_3344, SectionId::DebugInfo, 4)
.unwrap();
assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]);
w.write_offset_at(1, 0x5566, SectionId::DebugInfo, 2)
.unwrap();
assert_eq!(w.slice(), &[0x44, 0x66, 0x55, 0x11]);
let mut w = write::EndianVec::new(LittleEndian);
w.write_u8(0x11).unwrap();
w.write_u16(0x2233).unwrap();
w.write_u32(0x4455_6677).unwrap();
w.write_u64(0x8081_8283_8485_8687).unwrap();
#[rustfmt::skip]
assert_eq!(w.slice(), &[
0x11,
0x33, 0x22,
0x77, 0x66, 0x55, 0x44,
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
]);
w.write_u8_at(14, 0x11).unwrap();
w.write_u16_at(12, 0x2233).unwrap();
w.write_u32_at(8, 0x4455_6677).unwrap();
w.write_u64_at(0, 0x8081_8283_8485_8687).unwrap();
#[rustfmt::skip]
assert_eq!(w.slice(), &[
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
0x77, 0x66, 0x55, 0x44,
0x33, 0x22,
0x11,
]);
let mut w = write::EndianVec::new(BigEndian);
w.write_u8(0x11).unwrap();
w.write_u16(0x2233).unwrap();
w.write_u32(0x4455_6677).unwrap();
w.write_u64(0x8081_8283_8485_8687).unwrap();
#[rustfmt::skip]
assert_eq!(w.slice(), &[
0x11,
0x22, 0x33,
0x44, 0x55, 0x66, 0x77,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
]);
w.write_u8_at(14, 0x11).unwrap();
w.write_u16_at(12, 0x2233).unwrap();
w.write_u32_at(8, 0x4455_6677).unwrap();
w.write_u64_at(0, 0x8081_8283_8485_8687).unwrap();
#[rustfmt::skip]
assert_eq!(w.slice(), &[
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x44, 0x55, 0x66, 0x77,
0x22, 0x33,
0x11,
]);
let mut w = write::EndianVec::new(LittleEndian);
w.write_udata(0x11, 1).unwrap();
w.write_udata(0x2233, 2).unwrap();
w.write_udata(0x4455_6677, 4).unwrap();
w.write_udata(0x8081_8283_8485_8687, 8).unwrap();
#[rustfmt::skip]
assert_eq!(w.slice(), &[
0x11,
0x33, 0x22,
0x77, 0x66, 0x55, 0x44,
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
]);
assert_eq!(w.write_udata(0x100, 1), Err(Error::ValueTooLarge));
assert_eq!(w.write_udata(0x1_0000, 2), Err(Error::ValueTooLarge));
assert_eq!(w.write_udata(0x1_0000_0000, 4), Err(Error::ValueTooLarge));
assert_eq!(w.write_udata(0x00, 3), Err(Error::UnsupportedWordSize(3)));
w.write_udata_at(14, 0x11, 1).unwrap();
w.write_udata_at(12, 0x2233, 2).unwrap();
w.write_udata_at(8, 0x4455_6677, 4).unwrap();
w.write_udata_at(0, 0x8081_8283_8485_8687, 8).unwrap();
#[rustfmt::skip]
assert_eq!(w.slice(), &[
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
0x77, 0x66, 0x55, 0x44,
0x33, 0x22,
0x11,
]);
assert_eq!(w.write_udata_at(0, 0x100, 1), Err(Error::ValueTooLarge));
assert_eq!(w.write_udata_at(0, 0x1_0000, 2), Err(Error::ValueTooLarge));
assert_eq!(
w.write_udata_at(0, 0x1_0000_0000, 4),
Err(Error::ValueTooLarge)
);
assert_eq!(
w.write_udata_at(0, 0x00, 3),
Err(Error::UnsupportedWordSize(3))
);
let mut w = write::EndianVec::new(LittleEndian);
w.write_uleb128(0).unwrap();
assert_eq!(w.slice(), &[0]);
let mut w = write::EndianVec::new(LittleEndian);
w.write_uleb128(u64::MAX).unwrap();
assert_eq!(
w.slice(),
&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 1]
);
let mut w = write::EndianVec::new(LittleEndian);
w.write_sleb128(0).unwrap();
assert_eq!(w.slice(), &[0]);
let mut w = write::EndianVec::new(LittleEndian);
w.write_sleb128(i64::MAX).unwrap();
assert_eq!(
w.slice(),
&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0]
);
let mut w = write::EndianVec::new(LittleEndian);
w.write_sleb128(i64::MIN).unwrap();
assert_eq!(
w.slice(),
&[0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x7f]
);
let mut w = write::EndianVec::new(LittleEndian);
let offset = w.write_initial_length(Format::Dwarf32).unwrap();
assert_eq!(w.slice(), &[0, 0, 0, 0]);
w.write_initial_length_at(offset, 0x1122_3344, Format::Dwarf32)
.unwrap();
assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]);
assert_eq!(
w.write_initial_length_at(offset, 0x1_0000_0000, Format::Dwarf32),
Err(Error::ValueTooLarge)
);
let mut w = write::EndianVec::new(LittleEndian);
let offset = w.write_initial_length(Format::Dwarf64).unwrap();
assert_eq!(w.slice(), &[0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0]);
w.write_initial_length_at(offset, 0x1122_3344_5566_7788, Format::Dwarf64)
.unwrap();
assert_eq!(
w.slice(),
&[0xff, 0xff, 0xff, 0xff, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11]
);
}
}