blob: f19e9935f4675fdf8c325004984fe67e4885d864 [file] [log] [blame]
#![allow(rustc::usage_of_ty_tykind)]
use std::cmp::Ordering;
use std::{fmt, hash};
use crate::FloatTy;
use crate::HashStableContext;
use crate::IntTy;
use crate::Interner;
use crate::TyDecoder;
use crate::TyEncoder;
use crate::UintTy;
use crate::{DebruijnIndex, DebugWithInfcx, InferCtxtLike, OptWithInfcx};
use self::RegionKind::*;
use self::TyKind::*;
use rustc_data_structures::stable_hasher::HashStable;
use rustc_serialize::{Decodable, Decoder, Encodable};
/// Specifies how a trait object is represented.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum DynKind {
/// An unsized `dyn Trait` object
Dyn,
/// A sized `dyn* Trait` object
///
/// These objects are represented as a `(data, vtable)` pair where `data` is a value of some
/// ptr-sized and ptr-aligned dynamically determined type `T` and `vtable` is a pointer to the
/// vtable of `impl T for Trait`. This allows a `dyn*` object to be treated agnostically with
/// respect to whether it points to a `Box<T>`, `Rc<T>`, etc.
DynStar,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum AliasKind {
/// A projection `<Type as Trait>::AssocType`.
/// Can get normalized away if monomorphic enough.
Projection,
/// An associated type in an inherent `impl`
Inherent,
/// An opaque type (usually from `impl Trait` in type aliases or function return types)
/// Can only be normalized away in RevealAll mode
Opaque,
/// A type alias that actually checks its trait bounds.
/// Currently only used if the type alias references opaque types.
/// Can always be normalized away.
Weak,
}
/// Defines the kinds of types used by the type system.
///
/// Types written by the user start out as `hir::TyKind` and get
/// converted to this representation using `AstConv::ast_ty_to_ty`.
#[rustc_diagnostic_item = "IrTyKind"]
pub enum TyKind<I: Interner> {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive signed integer type. For example, `i32`.
Int(IntTy),
/// A primitive unsigned integer type. For example, `u32`.
Uint(UintTy),
/// A primitive floating-point type. For example, `f64`.
Float(FloatTy),
/// Algebraic data types (ADT). For example: structures, enumerations and unions.
///
/// For example, the type `List<i32>` would be represented using the `AdtDef`
/// for `struct List<T>` and the args `[i32]`.
///
/// Note that generic parameters in fields only get lazily substituted
/// by using something like `adt_def.all_fields().map(|field| field.ty(tcx, args))`.
Adt(I::AdtDef, I::GenericArgsRef),
/// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
Foreign(I::DefId),
/// The pointee of a string slice. Written as `str`.
Str,
/// An array with the given length. Written as `[T; N]`.
Array(I::Ty, I::Const),
/// The pointee of an array slice. Written as `[T]`.
Slice(I::Ty),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(I::TypeAndMut),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(I::Region, I::Ty, I::Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type.
///
/// For the function `fn foo() -> i32 { 3 }` this type would be
/// shown to the user as `fn() -> i32 {foo}`.
///
/// For example the type of `bar` here:
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(I::DefId, I::GenericArgsRef),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// Note that both functions and closures start out as either
/// [FnDef] or [Closure] which can be then be coerced to this variant.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(I::PolyFnSig),
/// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
Dynamic(I::ListBinderExistentialPredicate, I::Region, DynKind),
/// The anonymous type of a closure. Used to represent the type of `|a| a`.
///
/// Closure args contain both the - potentially substituted - generic parameters
/// of its parent and some synthetic parameters. See the documentation for
/// `ClosureArgs` for more details.
Closure(I::DefId, I::GenericArgsRef),
/// The anonymous type of a generator. Used to represent the type of
/// `|a| yield a`.
///
/// For more info about generator args, visit the documentation for
/// `GeneratorArgs`.
Generator(I::DefId, I::GenericArgsRef, I::Movability),
/// A type representing the types stored inside a generator.
/// This should only appear as part of the `GeneratorArgs`.
///
/// Unlike upvars, the witness can reference lifetimes from
/// inside of the generator itself. To deal with them in
/// the type of the generator, we convert them to higher ranked
/// lifetimes bound by the witness itself.
///
/// This contains the `DefId` and the `GenericArgsRef` of the generator.
/// The actual witness types are computed on MIR by the `mir_generator_witnesses` query.
///
/// Looking at the following example, the witness for this generator
/// may end up as something like `for<'a> [Vec<i32>, &'a Vec<i32>]`:
///
/// ```ignore UNSOLVED (ask @compiler-errors, should this error? can we just swap the yields?)
/// #![feature(generators)]
/// |a| {
/// let x = &vec![3];
/// yield a;
/// yield x[0];
/// }
/// # ;
/// ```
GeneratorWitness(I::DefId, I::GenericArgsRef),
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(I::ListTy),
/// A projection, opaque type, weak type alias, or inherent associated type.
/// All of these types are represented as pairs of def-id and args, and can
/// be normalized, so they are grouped conceptually.
Alias(AliasKind, I::AliasTy),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
Param(I::ParamTy),
/// Bound type variable, used to represent the `'a` in `for<'a> fn(&'a ())`.
///
/// For canonical queries, we replace inference variables with bound variables,
/// so e.g. when checking whether `&'_ (): Trait<_>` holds, we canonicalize that to
/// `for<'a, T> &'a (): Trait<T>` and then convert the introduced bound variables
/// back to inference variables in a new inference context when inside of the query.
///
/// It is conventional to render anonymous bound types like `^N` or `^D_N`,
/// where `N` is the bound variable's anonymous index into the binder, and
/// `D` is the debruijn index, or totally omitted if the debruijn index is zero.
///
/// See the `rustc-dev-guide` for more details about
/// [higher-ranked trait bounds][1] and [canonical queries][2].
///
/// [1]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
/// [2]: https://rustc-dev-guide.rust-lang.org/traits/canonical-queries.html
Bound(DebruijnIndex, I::BoundTy),
/// A placeholder type, used during higher ranked subtyping to instantiate
/// bound variables.
///
/// It is conventional to render anonymous placeholer types like `!N` or `!U_N`,
/// where `N` is the placeholder variable's anonymous index (which corresponds
/// to the bound variable's index from the binder from which it was instantiated),
/// and `U` is the universe index in which it is instantiated, or totally omitted
/// if the universe index is zero.
Placeholder(I::PlaceholderType),
/// A type variable used during type checking.
///
/// Similar to placeholders, inference variables also live in a universe to
/// correctly deal with higher ranked types. Though unlike placeholders,
/// that universe is stored in the `InferCtxt` instead of directly
/// inside of the type.
Infer(I::InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
Error(I::ErrorGuaranteed),
}
impl<I: Interner> TyKind<I> {
#[inline]
pub fn is_primitive(&self) -> bool {
matches!(self, Bool | Char | Int(_) | Uint(_) | Float(_))
}
}
// This is manually implemented for `TyKind` because `std::mem::discriminant`
// returns an opaque value that is `PartialEq` but not `PartialOrd`
#[inline]
const fn tykind_discriminant<I: Interner>(value: &TyKind<I>) -> usize {
match value {
Bool => 0,
Char => 1,
Int(_) => 2,
Uint(_) => 3,
Float(_) => 4,
Adt(_, _) => 5,
Foreign(_) => 6,
Str => 7,
Array(_, _) => 8,
Slice(_) => 9,
RawPtr(_) => 10,
Ref(_, _, _) => 11,
FnDef(_, _) => 12,
FnPtr(_) => 13,
Dynamic(..) => 14,
Closure(_, _) => 15,
Generator(_, _, _) => 16,
GeneratorWitness(_, _) => 17,
Never => 18,
Tuple(_) => 19,
Alias(_, _) => 20,
Param(_) => 21,
Bound(_, _) => 22,
Placeholder(_) => 23,
Infer(_) => 24,
Error(_) => 25,
}
}
// This is manually implemented because a derive would require `I: Clone`
impl<I: Interner> Clone for TyKind<I> {
fn clone(&self) -> Self {
match self {
Bool => Bool,
Char => Char,
Int(i) => Int(*i),
Uint(u) => Uint(*u),
Float(f) => Float(*f),
Adt(d, s) => Adt(d.clone(), s.clone()),
Foreign(d) => Foreign(d.clone()),
Str => Str,
Array(t, c) => Array(t.clone(), c.clone()),
Slice(t) => Slice(t.clone()),
RawPtr(p) => RawPtr(p.clone()),
Ref(r, t, m) => Ref(r.clone(), t.clone(), m.clone()),
FnDef(d, s) => FnDef(d.clone(), s.clone()),
FnPtr(s) => FnPtr(s.clone()),
Dynamic(p, r, repr) => Dynamic(p.clone(), r.clone(), *repr),
Closure(d, s) => Closure(d.clone(), s.clone()),
Generator(d, s, m) => Generator(d.clone(), s.clone(), m.clone()),
GeneratorWitness(d, s) => GeneratorWitness(d.clone(), s.clone()),
Never => Never,
Tuple(t) => Tuple(t.clone()),
Alias(k, p) => Alias(*k, p.clone()),
Param(p) => Param(p.clone()),
Bound(d, b) => Bound(*d, b.clone()),
Placeholder(p) => Placeholder(p.clone()),
Infer(t) => Infer(t.clone()),
Error(e) => Error(e.clone()),
}
}
}
// This is manually implemented because a derive would require `I: PartialEq`
impl<I: Interner> PartialEq for TyKind<I> {
#[inline]
fn eq(&self, other: &TyKind<I>) -> bool {
// You might expect this `match` to be preceded with this:
//
// tykind_discriminant(self) == tykind_discriminant(other) &&
//
// but the data patterns in practice are such that a comparison
// succeeds 99%+ of the time, and it's faster to omit it.
match (self, other) {
(Int(a_i), Int(b_i)) => a_i == b_i,
(Uint(a_u), Uint(b_u)) => a_u == b_u,
(Float(a_f), Float(b_f)) => a_f == b_f,
(Adt(a_d, a_s), Adt(b_d, b_s)) => a_d == b_d && a_s == b_s,
(Foreign(a_d), Foreign(b_d)) => a_d == b_d,
(Array(a_t, a_c), Array(b_t, b_c)) => a_t == b_t && a_c == b_c,
(Slice(a_t), Slice(b_t)) => a_t == b_t,
(RawPtr(a_t), RawPtr(b_t)) => a_t == b_t,
(Ref(a_r, a_t, a_m), Ref(b_r, b_t, b_m)) => a_r == b_r && a_t == b_t && a_m == b_m,
(FnDef(a_d, a_s), FnDef(b_d, b_s)) => a_d == b_d && a_s == b_s,
(FnPtr(a_s), FnPtr(b_s)) => a_s == b_s,
(Dynamic(a_p, a_r, a_repr), Dynamic(b_p, b_r, b_repr)) => {
a_p == b_p && a_r == b_r && a_repr == b_repr
}
(Closure(a_d, a_s), Closure(b_d, b_s)) => a_d == b_d && a_s == b_s,
(Generator(a_d, a_s, a_m), Generator(b_d, b_s, b_m)) => {
a_d == b_d && a_s == b_s && a_m == b_m
}
(GeneratorWitness(a_d, a_s), GeneratorWitness(b_d, b_s)) => a_d == b_d && a_s == b_s,
(Tuple(a_t), Tuple(b_t)) => a_t == b_t,
(Alias(a_i, a_p), Alias(b_i, b_p)) => a_i == b_i && a_p == b_p,
(Param(a_p), Param(b_p)) => a_p == b_p,
(Bound(a_d, a_b), Bound(b_d, b_b)) => a_d == b_d && a_b == b_b,
(Placeholder(a_p), Placeholder(b_p)) => a_p == b_p,
(Infer(a_t), Infer(b_t)) => a_t == b_t,
(Error(a_e), Error(b_e)) => a_e == b_e,
(Bool, Bool) | (Char, Char) | (Str, Str) | (Never, Never) => true,
_ => {
debug_assert!(
tykind_discriminant(self) != tykind_discriminant(other),
"This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}"
);
false
}
}
}
}
// This is manually implemented because a derive would require `I: Eq`
impl<I: Interner> Eq for TyKind<I> {}
// This is manually implemented because a derive would require `I: PartialOrd`
impl<I: Interner> PartialOrd for TyKind<I> {
#[inline]
fn partial_cmp(&self, other: &TyKind<I>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
// This is manually implemented because a derive would require `I: Ord`
impl<I: Interner> Ord for TyKind<I> {
#[inline]
fn cmp(&self, other: &TyKind<I>) -> Ordering {
tykind_discriminant(self).cmp(&tykind_discriminant(other)).then_with(|| {
match (self, other) {
(Int(a_i), Int(b_i)) => a_i.cmp(b_i),
(Uint(a_u), Uint(b_u)) => a_u.cmp(b_u),
(Float(a_f), Float(b_f)) => a_f.cmp(b_f),
(Adt(a_d, a_s), Adt(b_d, b_s)) => a_d.cmp(b_d).then_with(|| a_s.cmp(b_s)),
(Foreign(a_d), Foreign(b_d)) => a_d.cmp(b_d),
(Array(a_t, a_c), Array(b_t, b_c)) => a_t.cmp(b_t).then_with(|| a_c.cmp(b_c)),
(Slice(a_t), Slice(b_t)) => a_t.cmp(b_t),
(RawPtr(a_t), RawPtr(b_t)) => a_t.cmp(b_t),
(Ref(a_r, a_t, a_m), Ref(b_r, b_t, b_m)) => {
a_r.cmp(b_r).then_with(|| a_t.cmp(b_t).then_with(|| a_m.cmp(b_m)))
}
(FnDef(a_d, a_s), FnDef(b_d, b_s)) => a_d.cmp(b_d).then_with(|| a_s.cmp(b_s)),
(FnPtr(a_s), FnPtr(b_s)) => a_s.cmp(b_s),
(Dynamic(a_p, a_r, a_repr), Dynamic(b_p, b_r, b_repr)) => {
a_p.cmp(b_p).then_with(|| a_r.cmp(b_r).then_with(|| a_repr.cmp(b_repr)))
}
(Closure(a_p, a_s), Closure(b_p, b_s)) => a_p.cmp(b_p).then_with(|| a_s.cmp(b_s)),
(Generator(a_d, a_s, a_m), Generator(b_d, b_s, b_m)) => {
a_d.cmp(b_d).then_with(|| a_s.cmp(b_s).then_with(|| a_m.cmp(b_m)))
}
(
GeneratorWitness(a_d, a_s),
GeneratorWitness(b_d, b_s),
) => match Ord::cmp(a_d, b_d) {
Ordering::Equal => Ord::cmp(a_s, b_s),
cmp => cmp,
},
(Tuple(a_t), Tuple(b_t)) => a_t.cmp(b_t),
(Alias(a_i, a_p), Alias(b_i, b_p)) => a_i.cmp(b_i).then_with(|| a_p.cmp(b_p)),
(Param(a_p), Param(b_p)) => a_p.cmp(b_p),
(Bound(a_d, a_b), Bound(b_d, b_b)) => a_d.cmp(b_d).then_with(|| a_b.cmp(b_b)),
(Placeholder(a_p), Placeholder(b_p)) => a_p.cmp(b_p),
(Infer(a_t), Infer(b_t)) => a_t.cmp(b_t),
(Error(a_e), Error(b_e)) => a_e.cmp(b_e),
(Bool, Bool) | (Char, Char) | (Str, Str) | (Never, Never) => Ordering::Equal,
_ => {
debug_assert!(false, "This branch must be unreachable, maybe the match is missing an arm? self = {self:?}, other = {other:?}");
Ordering::Equal
}
}
})
}
}
// This is manually implemented because a derive would require `I: Hash`
impl<I: Interner> hash::Hash for TyKind<I> {
fn hash<__H: hash::Hasher>(&self, state: &mut __H) -> () {
tykind_discriminant(self).hash(state);
match self {
Int(i) => i.hash(state),
Uint(u) => u.hash(state),
Float(f) => f.hash(state),
Adt(d, s) => {
d.hash(state);
s.hash(state)
}
Foreign(d) => d.hash(state),
Array(t, c) => {
t.hash(state);
c.hash(state)
}
Slice(t) => t.hash(state),
RawPtr(t) => t.hash(state),
Ref(r, t, m) => {
r.hash(state);
t.hash(state);
m.hash(state)
}
FnDef(d, s) => {
d.hash(state);
s.hash(state)
}
FnPtr(s) => s.hash(state),
Dynamic(p, r, repr) => {
p.hash(state);
r.hash(state);
repr.hash(state)
}
Closure(d, s) => {
d.hash(state);
s.hash(state)
}
Generator(d, s, m) => {
d.hash(state);
s.hash(state);
m.hash(state)
}
GeneratorWitness(d, s) => {
d.hash(state);
s.hash(state);
}
Tuple(t) => t.hash(state),
Alias(i, p) => {
i.hash(state);
p.hash(state);
}
Param(p) => p.hash(state),
Bound(d, b) => {
d.hash(state);
b.hash(state)
}
Placeholder(p) => p.hash(state),
Infer(t) => t.hash(state),
Error(e) => e.hash(state),
Bool | Char | Str | Never => (),
}
}
}
impl<I: Interner> DebugWithInfcx<I> for TyKind<I> {
fn fmt<InfCtx: InferCtxtLike<I>>(
this: OptWithInfcx<'_, I, InfCtx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> fmt::Result {
match this.data {
Bool => write!(f, "bool"),
Char => write!(f, "char"),
Int(i) => write!(f, "{i:?}"),
Uint(u) => write!(f, "{u:?}"),
Float(float) => write!(f, "{float:?}"),
Adt(d, s) => {
write!(f, "{d:?}")?;
let mut s = s.clone().into_iter();
let first = s.next();
match first {
Some(first) => write!(f, "<{:?}", first)?,
None => return Ok(()),
};
for arg in s {
write!(f, ", {:?}", arg)?;
}
write!(f, ">")
}
Foreign(d) => f.debug_tuple_field1_finish("Foreign", d),
Str => write!(f, "str"),
Array(t, c) => write!(f, "[{:?}; {:?}]", &this.wrap(t), &this.wrap(c)),
Slice(t) => write!(f, "[{:?}]", &this.wrap(t)),
RawPtr(p) => {
let (ty, mutbl) = I::ty_and_mut_to_parts(p.clone());
match I::mutability_is_mut(mutbl) {
true => write!(f, "*mut "),
false => write!(f, "*const "),
}?;
write!(f, "{:?}", &this.wrap(ty))
}
Ref(r, t, m) => match I::mutability_is_mut(m.clone()) {
true => write!(f, "&{:?} mut {:?}", &this.wrap(r), &this.wrap(t)),
false => write!(f, "&{:?} {:?}", &this.wrap(r), &this.wrap(t)),
},
FnDef(d, s) => f.debug_tuple_field2_finish("FnDef", d, &this.wrap(s)),
FnPtr(s) => write!(f, "{:?}", &this.wrap(s)),
Dynamic(p, r, repr) => match repr {
DynKind::Dyn => write!(f, "dyn {:?} + {:?}", &this.wrap(p), &this.wrap(r)),
DynKind::DynStar => {
write!(f, "dyn* {:?} + {:?}", &this.wrap(p), &this.wrap(r))
}
},
Closure(d, s) => f.debug_tuple_field2_finish("Closure", d, &this.wrap(s)),
Generator(d, s, m) => f.debug_tuple_field3_finish("Generator", d, &this.wrap(s), m),
GeneratorWitness(d, s) => {
f.debug_tuple_field2_finish("GeneratorWitness", d, &this.wrap(s))
}
Never => write!(f, "!"),
Tuple(t) => {
write!(f, "(")?;
let mut count = 0;
for ty in t.clone() {
if count > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}", &this.wrap(ty))?;
count += 1;
}
// unary tuples need a trailing comma
if count == 1 {
write!(f, ",")?;
}
write!(f, ")")
}
Alias(i, a) => f.debug_tuple_field2_finish("Alias", i, &this.wrap(a)),
Param(p) => write!(f, "{p:?}"),
Bound(d, b) => crate::debug_bound_var(f, *d, b),
Placeholder(p) => write!(f, "{p:?}"),
Infer(t) => write!(f, "{:?}", this.wrap(t)),
TyKind::Error(_) => write!(f, "{{type error}}"),
}
}
}
// This is manually implemented because a derive would require `I: Debug`
impl<I: Interner> fmt::Debug for TyKind<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
OptWithInfcx::new_no_ctx(self).fmt(f)
}
}
// This is manually implemented because a derive would require `I: Encodable`
impl<I: Interner, E: TyEncoder> Encodable<E> for TyKind<I>
where
I::ErrorGuaranteed: Encodable<E>,
I::AdtDef: Encodable<E>,
I::GenericArgsRef: Encodable<E>,
I::DefId: Encodable<E>,
I::Ty: Encodable<E>,
I::Const: Encodable<E>,
I::Region: Encodable<E>,
I::TypeAndMut: Encodable<E>,
I::Mutability: Encodable<E>,
I::Movability: Encodable<E>,
I::PolyFnSig: Encodable<E>,
I::ListBinderExistentialPredicate: Encodable<E>,
I::BinderListTy: Encodable<E>,
I::ListTy: Encodable<E>,
I::AliasTy: Encodable<E>,
I::ParamTy: Encodable<E>,
I::BoundTy: Encodable<E>,
I::PlaceholderType: Encodable<E>,
I::InferTy: Encodable<E>,
I::PredicateKind: Encodable<E>,
I::AllocId: Encodable<E>,
{
fn encode(&self, e: &mut E) {
let disc = tykind_discriminant(self);
match self {
Bool => e.emit_enum_variant(disc, |_| {}),
Char => e.emit_enum_variant(disc, |_| {}),
Int(i) => e.emit_enum_variant(disc, |e| {
i.encode(e);
}),
Uint(u) => e.emit_enum_variant(disc, |e| {
u.encode(e);
}),
Float(f) => e.emit_enum_variant(disc, |e| {
f.encode(e);
}),
Adt(adt, args) => e.emit_enum_variant(disc, |e| {
adt.encode(e);
args.encode(e);
}),
Foreign(def_id) => e.emit_enum_variant(disc, |e| {
def_id.encode(e);
}),
Str => e.emit_enum_variant(disc, |_| {}),
Array(t, c) => e.emit_enum_variant(disc, |e| {
t.encode(e);
c.encode(e);
}),
Slice(t) => e.emit_enum_variant(disc, |e| {
t.encode(e);
}),
RawPtr(tam) => e.emit_enum_variant(disc, |e| {
tam.encode(e);
}),
Ref(r, t, m) => e.emit_enum_variant(disc, |e| {
r.encode(e);
t.encode(e);
m.encode(e);
}),
FnDef(def_id, args) => e.emit_enum_variant(disc, |e| {
def_id.encode(e);
args.encode(e);
}),
FnPtr(polyfnsig) => e.emit_enum_variant(disc, |e| {
polyfnsig.encode(e);
}),
Dynamic(l, r, repr) => e.emit_enum_variant(disc, |e| {
l.encode(e);
r.encode(e);
repr.encode(e);
}),
Closure(def_id, args) => e.emit_enum_variant(disc, |e| {
def_id.encode(e);
args.encode(e);
}),
Generator(def_id, args, m) => e.emit_enum_variant(disc, |e| {
def_id.encode(e);
args.encode(e);
m.encode(e);
}),
GeneratorWitness(def_id, args) => e.emit_enum_variant(disc, |e| {
def_id.encode(e);
args.encode(e);
}),
Never => e.emit_enum_variant(disc, |_| {}),
Tuple(args) => e.emit_enum_variant(disc, |e| {
args.encode(e);
}),
Alias(k, p) => e.emit_enum_variant(disc, |e| {
k.encode(e);
p.encode(e);
}),
Param(p) => e.emit_enum_variant(disc, |e| {
p.encode(e);
}),
Bound(d, b) => e.emit_enum_variant(disc, |e| {
d.encode(e);
b.encode(e);
}),
Placeholder(p) => e.emit_enum_variant(disc, |e| {
p.encode(e);
}),
Infer(i) => e.emit_enum_variant(disc, |e| {
i.encode(e);
}),
Error(d) => e.emit_enum_variant(disc, |e| {
d.encode(e);
}),
}
}
}
// This is manually implemented because a derive would require `I: Decodable`
impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for TyKind<I>
where
I::ErrorGuaranteed: Decodable<D>,
I::AdtDef: Decodable<D>,
I::GenericArgsRef: Decodable<D>,
I::DefId: Decodable<D>,
I::Ty: Decodable<D>,
I::Const: Decodable<D>,
I::Region: Decodable<D>,
I::TypeAndMut: Decodable<D>,
I::Mutability: Decodable<D>,
I::Movability: Decodable<D>,
I::PolyFnSig: Decodable<D>,
I::ListBinderExistentialPredicate: Decodable<D>,
I::BinderListTy: Decodable<D>,
I::ListTy: Decodable<D>,
I::AliasTy: Decodable<D>,
I::ParamTy: Decodable<D>,
I::AliasTy: Decodable<D>,
I::BoundTy: Decodable<D>,
I::PlaceholderType: Decodable<D>,
I::InferTy: Decodable<D>,
I::PredicateKind: Decodable<D>,
I::AllocId: Decodable<D>,
{
fn decode(d: &mut D) -> Self {
match Decoder::read_usize(d) {
0 => Bool,
1 => Char,
2 => Int(Decodable::decode(d)),
3 => Uint(Decodable::decode(d)),
4 => Float(Decodable::decode(d)),
5 => Adt(Decodable::decode(d), Decodable::decode(d)),
6 => Foreign(Decodable::decode(d)),
7 => Str,
8 => Array(Decodable::decode(d), Decodable::decode(d)),
9 => Slice(Decodable::decode(d)),
10 => RawPtr(Decodable::decode(d)),
11 => Ref(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
12 => FnDef(Decodable::decode(d), Decodable::decode(d)),
13 => FnPtr(Decodable::decode(d)),
14 => Dynamic(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
15 => Closure(Decodable::decode(d), Decodable::decode(d)),
16 => Generator(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
17 => GeneratorWitness(Decodable::decode(d), Decodable::decode(d)),
18 => Never,
19 => Tuple(Decodable::decode(d)),
20 => Alias(Decodable::decode(d), Decodable::decode(d)),
21 => Param(Decodable::decode(d)),
22 => Bound(Decodable::decode(d), Decodable::decode(d)),
23 => Placeholder(Decodable::decode(d)),
24 => Infer(Decodable::decode(d)),
25 => Error(Decodable::decode(d)),
_ => panic!(
"{}",
format!(
"invalid enum variant tag while decoding `{}`, expected 0..{}",
"TyKind", 26,
)
),
}
}
}
// This is not a derived impl because a derive would require `I: HashStable`
#[allow(rustc::usage_of_ty_tykind)]
impl<CTX: HashStableContext, I: Interner> HashStable<CTX> for TyKind<I>
where
I::AdtDef: HashStable<CTX>,
I::DefId: HashStable<CTX>,
I::GenericArgsRef: HashStable<CTX>,
I::Ty: HashStable<CTX>,
I::Const: HashStable<CTX>,
I::TypeAndMut: HashStable<CTX>,
I::PolyFnSig: HashStable<CTX>,
I::ListBinderExistentialPredicate: HashStable<CTX>,
I::Region: HashStable<CTX>,
I::Movability: HashStable<CTX>,
I::Mutability: HashStable<CTX>,
I::BinderListTy: HashStable<CTX>,
I::ListTy: HashStable<CTX>,
I::AliasTy: HashStable<CTX>,
I::BoundTy: HashStable<CTX>,
I::ParamTy: HashStable<CTX>,
I::PlaceholderType: HashStable<CTX>,
I::InferTy: HashStable<CTX>,
I::ErrorGuaranteed: HashStable<CTX>,
{
#[inline]
fn hash_stable(
&self,
__hcx: &mut CTX,
__hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
) {
std::mem::discriminant(self).hash_stable(__hcx, __hasher);
match self {
Bool => {}
Char => {}
Int(i) => {
i.hash_stable(__hcx, __hasher);
}
Uint(u) => {
u.hash_stable(__hcx, __hasher);
}
Float(f) => {
f.hash_stable(__hcx, __hasher);
}
Adt(adt, args) => {
adt.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
Foreign(def_id) => {
def_id.hash_stable(__hcx, __hasher);
}
Str => {}
Array(t, c) => {
t.hash_stable(__hcx, __hasher);
c.hash_stable(__hcx, __hasher);
}
Slice(t) => {
t.hash_stable(__hcx, __hasher);
}
RawPtr(tam) => {
tam.hash_stable(__hcx, __hasher);
}
Ref(r, t, m) => {
r.hash_stable(__hcx, __hasher);
t.hash_stable(__hcx, __hasher);
m.hash_stable(__hcx, __hasher);
}
FnDef(def_id, args) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
FnPtr(polyfnsig) => {
polyfnsig.hash_stable(__hcx, __hasher);
}
Dynamic(l, r, repr) => {
l.hash_stable(__hcx, __hasher);
r.hash_stable(__hcx, __hasher);
repr.hash_stable(__hcx, __hasher);
}
Closure(def_id, args) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
Generator(def_id, args, m) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
m.hash_stable(__hcx, __hasher);
}
GeneratorWitness(def_id, args) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
Never => {}
Tuple(args) => {
args.hash_stable(__hcx, __hasher);
}
Alias(k, p) => {
k.hash_stable(__hcx, __hasher);
p.hash_stable(__hcx, __hasher);
}
Param(p) => {
p.hash_stable(__hcx, __hasher);
}
Bound(d, b) => {
d.hash_stable(__hcx, __hasher);
b.hash_stable(__hcx, __hasher);
}
Placeholder(p) => {
p.hash_stable(__hcx, __hasher);
}
Infer(i) => {
i.hash_stable(__hcx, __hasher);
}
Error(d) => {
d.hash_stable(__hcx, __hasher);
}
}
}
}
/// Represents a constant in Rust.
// #[derive(derive_more::From)]
pub enum ConstKind<I: Interner> {
/// A const generic parameter.
Param(I::ParamConst),
/// Infer the value of the const.
Infer(I::InferConst),
/// Bound const variable, used only when preparing a trait query.
Bound(DebruijnIndex, I::BoundConst),
/// A placeholder const - universally quantified higher-ranked const.
Placeholder(I::PlaceholderConst),
/// An unnormalized const item such as an anon const or assoc const or free const item.
/// Right now anything other than anon consts does not actually work properly but this
/// should
Unevaluated(I::AliasConst),
/// Used to hold computed value.
Value(I::ValueConst),
/// A placeholder for a const which could not be computed; this is
/// propagated to avoid useless error messages.
Error(I::ErrorGuaranteed),
/// Unevaluated non-const-item, used by `feature(generic_const_exprs)` to represent
/// const arguments such as `N + 1` or `foo(N)`
Expr(I::ExprConst),
}
const fn const_kind_discriminant<I: Interner>(value: &ConstKind<I>) -> usize {
match value {
ConstKind::Param(_) => 0,
ConstKind::Infer(_) => 1,
ConstKind::Bound(_, _) => 2,
ConstKind::Placeholder(_) => 3,
ConstKind::Unevaluated(_) => 4,
ConstKind::Value(_) => 5,
ConstKind::Error(_) => 6,
ConstKind::Expr(_) => 7,
}
}
impl<I: Interner> hash::Hash for ConstKind<I> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
const_kind_discriminant(self).hash(state);
match self {
ConstKind::Param(p) => p.hash(state),
ConstKind::Infer(i) => i.hash(state),
ConstKind::Bound(d, b) => {
d.hash(state);
b.hash(state);
}
ConstKind::Placeholder(p) => p.hash(state),
ConstKind::Unevaluated(u) => u.hash(state),
ConstKind::Value(v) => v.hash(state),
ConstKind::Error(e) => e.hash(state),
ConstKind::Expr(e) => e.hash(state),
}
}
}
impl<CTX: HashStableContext, I: Interner> HashStable<CTX> for ConstKind<I>
where
I::ParamConst: HashStable<CTX>,
I::InferConst: HashStable<CTX>,
I::BoundConst: HashStable<CTX>,
I::PlaceholderConst: HashStable<CTX>,
I::AliasConst: HashStable<CTX>,
I::ValueConst: HashStable<CTX>,
I::ErrorGuaranteed: HashStable<CTX>,
I::ExprConst: HashStable<CTX>,
{
fn hash_stable(
&self,
hcx: &mut CTX,
hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
) {
const_kind_discriminant(self).hash_stable(hcx, hasher);
match self {
ConstKind::Param(p) => p.hash_stable(hcx, hasher),
ConstKind::Infer(i) => i.hash_stable(hcx, hasher),
ConstKind::Bound(d, b) => {
d.hash_stable(hcx, hasher);
b.hash_stable(hcx, hasher);
}
ConstKind::Placeholder(p) => p.hash_stable(hcx, hasher),
ConstKind::Unevaluated(u) => u.hash_stable(hcx, hasher),
ConstKind::Value(v) => v.hash_stable(hcx, hasher),
ConstKind::Error(e) => e.hash_stable(hcx, hasher),
ConstKind::Expr(e) => e.hash_stable(hcx, hasher),
}
}
}
impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for ConstKind<I>
where
I::ParamConst: Decodable<D>,
I::InferConst: Decodable<D>,
I::BoundConst: Decodable<D>,
I::PlaceholderConst: Decodable<D>,
I::AliasConst: Decodable<D>,
I::ValueConst: Decodable<D>,
I::ErrorGuaranteed: Decodable<D>,
I::ExprConst: Decodable<D>,
{
fn decode(d: &mut D) -> Self {
match Decoder::read_usize(d) {
0 => ConstKind::Param(Decodable::decode(d)),
1 => ConstKind::Infer(Decodable::decode(d)),
2 => ConstKind::Bound(Decodable::decode(d), Decodable::decode(d)),
3 => ConstKind::Placeholder(Decodable::decode(d)),
4 => ConstKind::Unevaluated(Decodable::decode(d)),
5 => ConstKind::Value(Decodable::decode(d)),
6 => ConstKind::Error(Decodable::decode(d)),
7 => ConstKind::Expr(Decodable::decode(d)),
_ => panic!(
"{}",
format!(
"invalid enum variant tag while decoding `{}`, expected 0..{}",
"ConstKind", 8,
)
),
}
}
}
impl<I: Interner, E: TyEncoder<I = I>> Encodable<E> for ConstKind<I>
where
I::ParamConst: Encodable<E>,
I::InferConst: Encodable<E>,
I::BoundConst: Encodable<E>,
I::PlaceholderConst: Encodable<E>,
I::AliasConst: Encodable<E>,
I::ValueConst: Encodable<E>,
I::ErrorGuaranteed: Encodable<E>,
I::ExprConst: Encodable<E>,
{
fn encode(&self, e: &mut E) {
let disc = const_kind_discriminant(self);
match self {
ConstKind::Param(p) => e.emit_enum_variant(disc, |e| p.encode(e)),
ConstKind::Infer(i) => e.emit_enum_variant(disc, |e| i.encode(e)),
ConstKind::Bound(d, b) => e.emit_enum_variant(disc, |e| {
d.encode(e);
b.encode(e);
}),
ConstKind::Placeholder(p) => e.emit_enum_variant(disc, |e| p.encode(e)),
ConstKind::Unevaluated(u) => e.emit_enum_variant(disc, |e| u.encode(e)),
ConstKind::Value(v) => e.emit_enum_variant(disc, |e| v.encode(e)),
ConstKind::Error(er) => e.emit_enum_variant(disc, |e| er.encode(e)),
ConstKind::Expr(ex) => e.emit_enum_variant(disc, |e| ex.encode(e)),
}
}
}
impl<I: Interner> PartialOrd for ConstKind<I> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<I: Interner> Ord for ConstKind<I> {
fn cmp(&self, other: &Self) -> Ordering {
const_kind_discriminant(self)
.cmp(&const_kind_discriminant(other))
.then_with(|| match (self, other) {
(ConstKind::Param(p1), ConstKind::Param(p2)) => p1.cmp(p2),
(ConstKind::Infer(i1), ConstKind::Infer(i2)) => i1.cmp(i2),
(ConstKind::Bound(d1, b1), ConstKind::Bound(d2, b2)) => d1.cmp(d2).then_with(|| b1.cmp(b2)),
(ConstKind::Placeholder(p1), ConstKind::Placeholder(p2)) => p1.cmp(p2),
(ConstKind::Unevaluated(u1), ConstKind::Unevaluated(u2)) => u1.cmp(u2),
(ConstKind::Value(v1), ConstKind::Value(v2)) => v1.cmp(v2),
(ConstKind::Error(e1), ConstKind::Error(e2)) => e1.cmp(e2),
(ConstKind::Expr(e1), ConstKind::Expr(e2)) => e1.cmp(e2),
_ => {
debug_assert!(false, "This branch must be unreachable, maybe the match is missing an arm? self = {self:?}, other = {other:?}");
Ordering::Equal
}
})
}
}
impl<I: Interner> PartialEq for ConstKind<I> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Param(l0), Self::Param(r0)) => l0 == r0,
(Self::Infer(l0), Self::Infer(r0)) => l0 == r0,
(Self::Bound(l0, l1), Self::Bound(r0, r1)) => l0 == r0 && l1 == r1,
(Self::Placeholder(l0), Self::Placeholder(r0)) => l0 == r0,
(Self::Unevaluated(l0), Self::Unevaluated(r0)) => l0 == r0,
(Self::Value(l0), Self::Value(r0)) => l0 == r0,
(Self::Error(l0), Self::Error(r0)) => l0 == r0,
(Self::Expr(l0), Self::Expr(r0)) => l0 == r0,
_ => false,
}
}
}
impl<I: Interner> Eq for ConstKind<I> {}
impl<I: Interner> Clone for ConstKind<I> {
fn clone(&self) -> Self {
match self {
Self::Param(arg0) => Self::Param(arg0.clone()),
Self::Infer(arg0) => Self::Infer(arg0.clone()),
Self::Bound(arg0, arg1) => Self::Bound(arg0.clone(), arg1.clone()),
Self::Placeholder(arg0) => Self::Placeholder(arg0.clone()),
Self::Unevaluated(arg0) => Self::Unevaluated(arg0.clone()),
Self::Value(arg0) => Self::Value(arg0.clone()),
Self::Error(arg0) => Self::Error(arg0.clone()),
Self::Expr(arg0) => Self::Expr(arg0.clone()),
}
}
}
/// Representation of regions. Note that the NLL checker uses a distinct
/// representation of regions. For this reason, it internally replaces all the
/// regions with inference variables -- the index of the variable is then used
/// to index into internal NLL data structures. See `rustc_const_eval::borrow_check`
/// module for more information.
///
/// Note: operations are on the wrapper `Region` type, which is interned,
/// rather than this type.
///
/// ## The Region lattice within a given function
///
/// In general, the region lattice looks like
///
/// ```text
/// static ----------+-----...------+ (greatest)
/// | | |
/// early-bound and | |
/// free regions | |
/// | | |
/// | | |
/// empty(root) placeholder(U1) |
/// | / |
/// | / placeholder(Un)
/// empty(U1) -- /
/// | /
/// ... /
/// | /
/// empty(Un) -------- (smallest)
/// ```
///
/// Early-bound/free regions are the named lifetimes in scope from the
/// function declaration. They have relationships to one another
/// determined based on the declared relationships from the
/// function.
///
/// Note that inference variables and bound regions are not included
/// in this diagram. In the case of inference variables, they should
/// be inferred to some other region from the diagram. In the case of
/// bound regions, they are excluded because they don't make sense to
/// include -- the diagram indicates the relationship between free
/// regions.
///
/// ## Inference variables
///
/// During region inference, we sometimes create inference variables,
/// represented as `ReVar`. These will be inferred by the code in
/// `infer::lexical_region_resolve` to some free region from the
/// lattice above (the minimal region that meets the
/// constraints).
///
/// During NLL checking, where regions are defined differently, we
/// also use `ReVar` -- in that case, the index is used to index into
/// the NLL region checker's data structures. The variable may in fact
/// represent either a free region or an inference variable, in that
/// case.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are two kind of
/// bound regions: early-bound, which are bound in an item's `Generics`,
/// and are substituted by an `GenericArgs`, and late-bound, which are part of
/// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g., in types passed to type inference, and
/// should first be substituted (by placeholder regions, free regions,
/// or region variables).
///
/// ## Placeholder and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// To do this, we replace the bound regions with placeholder markers,
/// which don't satisfy any relation not explicitly provided.
///
/// There are two kinds of placeholder regions in rustc: `ReFree` and
/// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
/// aren't checked when you `make_subregion` (or `eq_types`), only by
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `RePlaceholder` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your placeholder region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a placeholder region `'%a`, the variable `'_` would just be
/// instantiated to the placeholder region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the placeholder region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by the [rustc dev guide].
///
/// [1]: https://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2]: https://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
pub enum RegionKind<I: Interner> {
/// Region bound in a type or fn declaration which will be
/// substituted 'early' -- that is, at the same time when type
/// parameters are substituted.
ReEarlyBound(I::EarlyBoundRegion),
/// Region bound in a function scope, which will be substituted when the
/// function is called.
ReLateBound(DebruijnIndex, I::BoundRegion),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
ReFree(I::FreeRegion),
/// Static data that has an "infinite" lifetime. Top in the region lattice.
ReStatic,
/// A region variable. Should not exist outside of type inference.
ReVar(I::RegionVid),
/// A placeholder region -- basically, the higher-ranked version of `ReFree`.
/// Should not exist outside of type inference.
RePlaceholder(I::PlaceholderRegion),
/// Erased region, used by trait selection, in MIR and during codegen.
ReErased,
/// A region that resulted from some other error. Used exclusively for diagnostics.
ReError(I::ErrorGuaranteed),
}
// This is manually implemented for `RegionKind` because `std::mem::discriminant`
// returns an opaque value that is `PartialEq` but not `PartialOrd`
#[inline]
const fn regionkind_discriminant<I: Interner>(value: &RegionKind<I>) -> usize {
match value {
ReEarlyBound(_) => 0,
ReLateBound(_, _) => 1,
ReFree(_) => 2,
ReStatic => 3,
ReVar(_) => 4,
RePlaceholder(_) => 5,
ReErased => 6,
ReError(_) => 7,
}
}
// This is manually implemented because a derive would require `I: Copy`
impl<I: Interner> Copy for RegionKind<I>
where
I::EarlyBoundRegion: Copy,
I::BoundRegion: Copy,
I::FreeRegion: Copy,
I::RegionVid: Copy,
I::PlaceholderRegion: Copy,
I::ErrorGuaranteed: Copy,
{
}
// This is manually implemented because a derive would require `I: Clone`
impl<I: Interner> Clone for RegionKind<I> {
fn clone(&self) -> Self {
match self {
ReEarlyBound(r) => ReEarlyBound(r.clone()),
ReLateBound(d, r) => ReLateBound(*d, r.clone()),
ReFree(r) => ReFree(r.clone()),
ReStatic => ReStatic,
ReVar(r) => ReVar(r.clone()),
RePlaceholder(r) => RePlaceholder(r.clone()),
ReErased => ReErased,
ReError(r) => ReError(r.clone()),
}
}
}
// This is manually implemented because a derive would require `I: PartialEq`
impl<I: Interner> PartialEq for RegionKind<I> {
#[inline]
fn eq(&self, other: &RegionKind<I>) -> bool {
regionkind_discriminant(self) == regionkind_discriminant(other)
&& match (self, other) {
(ReEarlyBound(a_r), ReEarlyBound(b_r)) => a_r == b_r,
(ReLateBound(a_d, a_r), ReLateBound(b_d, b_r)) => a_d == b_d && a_r == b_r,
(ReFree(a_r), ReFree(b_r)) => a_r == b_r,
(ReStatic, ReStatic) => true,
(ReVar(a_r), ReVar(b_r)) => a_r == b_r,
(RePlaceholder(a_r), RePlaceholder(b_r)) => a_r == b_r,
(ReErased, ReErased) => true,
(ReError(_), ReError(_)) => true,
_ => {
debug_assert!(
false,
"This branch must be unreachable, maybe the match is missing an arm? self = {self:?}, other = {other:?}"
);
true
}
}
}
}
// This is manually implemented because a derive would require `I: Eq`
impl<I: Interner> Eq for RegionKind<I> {}
// This is manually implemented because a derive would require `I: PartialOrd`
impl<I: Interner> PartialOrd for RegionKind<I> {
#[inline]
fn partial_cmp(&self, other: &RegionKind<I>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
// This is manually implemented because a derive would require `I: Ord`
impl<I: Interner> Ord for RegionKind<I> {
#[inline]
fn cmp(&self, other: &RegionKind<I>) -> Ordering {
regionkind_discriminant(self).cmp(&regionkind_discriminant(other)).then_with(|| {
match (self, other) {
(ReEarlyBound(a_r), ReEarlyBound(b_r)) => a_r.cmp(b_r),
(ReLateBound(a_d, a_r), ReLateBound(b_d, b_r)) => {
a_d.cmp(b_d).then_with(|| a_r.cmp(b_r))
}
(ReFree(a_r), ReFree(b_r)) => a_r.cmp(b_r),
(ReStatic, ReStatic) => Ordering::Equal,
(ReVar(a_r), ReVar(b_r)) => a_r.cmp(b_r),
(RePlaceholder(a_r), RePlaceholder(b_r)) => a_r.cmp(b_r),
(ReErased, ReErased) => Ordering::Equal,
_ => {
debug_assert!(false, "This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}");
Ordering::Equal
}
}
})
}
}
// This is manually implemented because a derive would require `I: Hash`
impl<I: Interner> hash::Hash for RegionKind<I> {
fn hash<H: hash::Hasher>(&self, state: &mut H) -> () {
regionkind_discriminant(self).hash(state);
match self {
ReEarlyBound(r) => r.hash(state),
ReLateBound(d, r) => {
d.hash(state);
r.hash(state)
}
ReFree(r) => r.hash(state),
ReStatic => (),
ReVar(r) => r.hash(state),
RePlaceholder(r) => r.hash(state),
ReErased => (),
ReError(_) => (),
}
}
}
impl<I: Interner> DebugWithInfcx<I> for RegionKind<I> {
fn fmt<InfCtx: InferCtxtLike<I>>(
this: OptWithInfcx<'_, I, InfCtx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
match this.data {
ReEarlyBound(data) => write!(f, "ReEarlyBound({data:?})"),
ReLateBound(binder_id, bound_region) => {
write!(f, "ReLateBound({binder_id:?}, {bound_region:?})")
}
ReFree(fr) => write!(f, "{fr:?}"),
ReStatic => f.write_str("ReStatic"),
ReVar(vid) => write!(f, "{:?}", &this.wrap(vid)),
RePlaceholder(placeholder) => write!(f, "RePlaceholder({placeholder:?})"),
ReErased => f.write_str("ReErased"),
ReError(_) => f.write_str("ReError"),
}
}
}
impl<I: Interner> fmt::Debug for RegionKind<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
OptWithInfcx::new_no_ctx(self).fmt(f)
}
}
// This is manually implemented because a derive would require `I: Encodable`
impl<I: Interner, E: TyEncoder> Encodable<E> for RegionKind<I>
where
I::EarlyBoundRegion: Encodable<E>,
I::BoundRegion: Encodable<E>,
I::FreeRegion: Encodable<E>,
I::RegionVid: Encodable<E>,
I::PlaceholderRegion: Encodable<E>,
{
fn encode(&self, e: &mut E) {
let disc = regionkind_discriminant(self);
match self {
ReEarlyBound(a) => e.emit_enum_variant(disc, |e| {
a.encode(e);
}),
ReLateBound(a, b) => e.emit_enum_variant(disc, |e| {
a.encode(e);
b.encode(e);
}),
ReFree(a) => e.emit_enum_variant(disc, |e| {
a.encode(e);
}),
ReStatic => e.emit_enum_variant(disc, |_| {}),
ReVar(a) => e.emit_enum_variant(disc, |e| {
a.encode(e);
}),
RePlaceholder(a) => e.emit_enum_variant(disc, |e| {
a.encode(e);
}),
ReErased => e.emit_enum_variant(disc, |_| {}),
ReError(_) => e.emit_enum_variant(disc, |_| {}),
}
}
}
// This is manually implemented because a derive would require `I: Decodable`
impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for RegionKind<I>
where
I::EarlyBoundRegion: Decodable<D>,
I::BoundRegion: Decodable<D>,
I::FreeRegion: Decodable<D>,
I::RegionVid: Decodable<D>,
I::PlaceholderRegion: Decodable<D>,
I::ErrorGuaranteed: Decodable<D>,
{
fn decode(d: &mut D) -> Self {
match Decoder::read_usize(d) {
0 => ReEarlyBound(Decodable::decode(d)),
1 => ReLateBound(Decodable::decode(d), Decodable::decode(d)),
2 => ReFree(Decodable::decode(d)),
3 => ReStatic,
4 => ReVar(Decodable::decode(d)),
5 => RePlaceholder(Decodable::decode(d)),
6 => ReErased,
7 => ReError(Decodable::decode(d)),
_ => panic!(
"{}",
format!(
"invalid enum variant tag while decoding `{}`, expected 0..{}",
"RegionKind", 8,
)
),
}
}
}
// This is not a derived impl because a derive would require `I: HashStable`
impl<CTX: HashStableContext, I: Interner> HashStable<CTX> for RegionKind<I>
where
I::EarlyBoundRegion: HashStable<CTX>,
I::BoundRegion: HashStable<CTX>,
I::FreeRegion: HashStable<CTX>,
I::RegionVid: HashStable<CTX>,
I::PlaceholderRegion: HashStable<CTX>,
{
#[inline]
fn hash_stable(
&self,
hcx: &mut CTX,
hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
) {
std::mem::discriminant(self).hash_stable(hcx, hasher);
match self {
ReErased | ReStatic | ReError(_) => {
// No variant fields to hash for these ...
}
ReLateBound(d, r) => {
d.hash_stable(hcx, hasher);
r.hash_stable(hcx, hasher);
}
ReEarlyBound(r) => {
r.hash_stable(hcx, hasher);
}
ReFree(r) => {
r.hash_stable(hcx, hasher);
}
RePlaceholder(r) => {
r.hash_stable(hcx, hasher);
}
ReVar(_) => {
panic!("region variables should not be hashed: {self:?}")
}
}
}
}