blob: 38af53e8adcacab2cd6916b238f1b447269d9a39 [file] [log] [blame]
//! Storage for span data shared by multiple [`Layer`]s.
//!
//! ## Using the Span Registry
//!
//! This module provides the [`Registry`] type, a [`Subscriber`] implementation
//! which tracks per-span data and exposes it to [`Layer`]s. When a `Registry`
//! is used as the base `Subscriber` of a `Layer` stack, the
//! [`layer::Context`][ctx] type will provide methods allowing `Layer`s to
//! [look up span data][lookup] stored in the registry. While [`Registry`] is a
//! reasonable default for storing spans and events, other stores that implement
//! [`LookupSpan`] and [`Subscriber`] themselves (with [`SpanData`] implemented
//! by the per-span data they store) can be used as a drop-in replacement.
//!
//! For example, we might create a `Registry` and add multiple `Layer`s like so:
//! ```rust
//! use tracing_subscriber::{registry::Registry, Layer, prelude::*};
//! # use tracing_core::Subscriber;
//! # pub struct FooLayer {}
//! # pub struct BarLayer {}
//! # impl<S: Subscriber> Layer<S> for FooLayer {}
//! # impl<S: Subscriber> Layer<S> for BarLayer {}
//! # impl FooLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl BarLayer {
//! # fn new() -> Self { Self {} }
//! # }
//!
//! let subscriber = Registry::default()
//! .with(FooLayer::new())
//! .with(BarLayer::new());
//! ```
//!
//! If a type implementing `Layer` depends on the functionality of a `Registry`
//! implementation, it should bound its `Subscriber` type parameter with the
//! [`LookupSpan`] trait, like so:
//!
//! ```rust
//! use tracing_subscriber::{registry, Layer};
//! use tracing_core::Subscriber;
//!
//! pub struct MyLayer {
//! // ...
//! }
//!
//! impl<S> Layer<S> for MyLayer
//! where
//! S: Subscriber + for<'a> registry::LookupSpan<'a>,
//! {
//! // ...
//! }
//! ```
//! When this bound is added, the `Layer` implementation will be guaranteed
//! access to the [`Context`][ctx] methods, such as [`Context::span`][lookup], that
//! require the root subscriber to be a registry.
//!
//! [`Layer`]: crate::layer::Layer
//! [`Subscriber`]: tracing_core::Subscriber
//! [ctx]: crate::layer::Context
//! [lookup]: crate::layer::Context::span()
use tracing_core::{field::FieldSet, span::Id, Metadata};
feature! {
#![feature = "std"]
/// A module containing a type map of span extensions.
mod extensions;
pub use extensions::{Extensions, ExtensionsMut};
}
feature! {
#![all(feature = "registry", feature = "std")]
mod sharded;
mod stack;
pub use sharded::Data;
pub use sharded::Registry;
use crate::filter::FilterId;
}
/// Provides access to stored span data.
///
/// Subscribers which store span data and associate it with span IDs should
/// implement this trait; if they do, any [`Layer`]s wrapping them can look up
/// metadata via the [`Context`] type's [`span()`] method.
///
/// [`Layer`]: super::layer::Layer
/// [`Context`]: super::layer::Context
/// [`span()`]: super::layer::Context::span
pub trait LookupSpan<'a> {
/// The type of span data stored in this registry.
type Data: SpanData<'a>;
/// Returns the [`SpanData`] for a given `Id`, if it exists.
///
/// <pre class="ignore" style="white-space:normal;font:inherit;">
/// <strong>Note</strong>: users of the <code>LookupSpan</code> trait should
/// typically call the <a href="#method.span"><code>span</code></a> method rather
/// than this method. The <code>span</code> method is implemented by
/// <em>calling</em> <code>span_data</code>, but returns a reference which is
/// capable of performing more sophisiticated queries.
/// </pre>
///
fn span_data(&'a self, id: &Id) -> Option<Self::Data>;
/// Returns a [`SpanRef`] for the span with the given `Id`, if it exists.
///
/// A `SpanRef` is similar to [`SpanData`], but it allows performing
/// additional lookups against the registryr that stores the wrapped data.
///
/// In general, _users_ of the `LookupSpan` trait should use this method
/// rather than the [`span_data`] method; while _implementors_ of this trait
/// should only implement `span_data`.
///
/// [`span_data`]: LookupSpan::span_data()
fn span(&'a self, id: &Id) -> Option<SpanRef<'_, Self>>
where
Self: Sized,
{
let data = self.span_data(id)?;
Some(SpanRef {
registry: self,
data,
#[cfg(feature = "registry")]
filter: FilterId::none(),
})
}
/// Registers a [`Filter`] for [per-layer filtering] with this
/// [`Subscriber`].
///
/// The [`Filter`] can then use the returned [`FilterId`] to
/// [check if it previously enabled a span][check].
///
/// # Panics
///
/// If this `Subscriber` does not support [per-layer filtering].
///
/// [`Filter`]: crate::layer::Filter
/// [per-layer filtering]: crate::layer::Layer#per-layer-filtering
/// [`Subscriber`]: tracing_core::Subscriber
/// [`FilterId`]: crate::filter::FilterId
/// [check]: SpanData::is_enabled_for
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
fn register_filter(&mut self) -> FilterId {
panic!(
"{} does not currently support filters",
std::any::type_name::<Self>()
)
}
}
/// A stored representation of data associated with a span.
pub trait SpanData<'a> {
/// Returns this span's ID.
fn id(&self) -> Id;
/// Returns a reference to the span's `Metadata`.
fn metadata(&self) -> &'static Metadata<'static>;
/// Returns a reference to the ID
fn parent(&self) -> Option<&Id>;
/// Returns a reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
fn extensions(&self) -> Extensions<'_>;
/// Returns a mutable reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
fn extensions_mut(&self) -> ExtensionsMut<'_>;
/// Returns `true` if this span is enabled for the [per-layer filter][plf]
/// corresponding to the provided [`FilterId`].
///
/// ## Default Implementation
///
/// By default, this method assumes that the [`LookupSpan`] implementation
/// does not support [per-layer filtering][plf], and always returns `true`.
///
/// [plf]: crate::layer::Layer#per-layer-filtering
/// [`FilterId`]: crate::filter::FilterId
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
fn is_enabled_for(&self, filter: FilterId) -> bool {
let _ = filter;
true
}
}
/// A reference to [span data] and the associated [registry].
///
/// This type implements all the same methods as [`SpanData`][span data], and
/// provides additional methods for querying the registry based on values from
/// the span.
///
/// [span data]: SpanData
/// [registry]: LookupSpan
#[derive(Debug)]
pub struct SpanRef<'a, R: LookupSpan<'a>> {
registry: &'a R,
data: R::Data,
#[cfg(feature = "registry")]
filter: FilterId,
}
/// An iterator over the parents of a span, ordered from leaf to root.
///
/// This is returned by the [`SpanRef::scope`] method.
#[derive(Debug)]
pub struct Scope<'a, R> {
registry: &'a R,
next: Option<Id>,
#[cfg(all(feature = "registry", feature = "std"))]
filter: FilterId,
}
feature! {
#![any(feature = "alloc", feature = "std")]
#[cfg(not(feature = "smallvec"))]
use alloc::vec::{self, Vec};
use core::{fmt,iter};
/// An iterator over the parents of a span, ordered from root to leaf.
///
/// This is returned by the [`Scope::from_root`] method.
pub struct ScopeFromRoot<'a, R>
where
R: LookupSpan<'a>,
{
#[cfg(feature = "smallvec")]
spans: iter::Rev<smallvec::IntoIter<SpanRefVecArray<'a, R>>>,
#[cfg(not(feature = "smallvec"))]
spans: iter::Rev<vec::IntoIter<SpanRef<'a, R>>>,
}
#[cfg(feature = "smallvec")]
type SpanRefVecArray<'span, L> = [SpanRef<'span, L>; 16];
impl<'a, R> Scope<'a, R>
where
R: LookupSpan<'a>,
{
/// Flips the order of the iterator, so that it is ordered from root to leaf.
///
/// The iterator will first return the root span, then that span's immediate child,
/// and so on until it finally returns the span that [`SpanRef::scope`] was called on.
///
/// If any items were consumed from the [`Scope`] before calling this method then they
/// will *not* be returned from the [`ScopeFromRoot`].
///
/// **Note**: this will allocate if there are many spans remaining, or if the
/// "smallvec" feature flag is not enabled.
#[allow(clippy::wrong_self_convention)]
pub fn from_root(self) -> ScopeFromRoot<'a, R> {
#[cfg(feature = "smallvec")]
type Buf<T> = smallvec::SmallVec<T>;
#[cfg(not(feature = "smallvec"))]
type Buf<T> = Vec<T>;
ScopeFromRoot {
spans: self.collect::<Buf<_>>().into_iter().rev(),
}
}
}
impl<'a, R> Iterator for ScopeFromRoot<'a, R>
where
R: LookupSpan<'a>,
{
type Item = SpanRef<'a, R>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.spans.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.spans.size_hint()
}
}
impl<'a, R> fmt::Debug for ScopeFromRoot<'a, R>
where
R: LookupSpan<'a>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ScopeFromRoot { .. }")
}
}
}
impl<'a, R> Iterator for Scope<'a, R>
where
R: LookupSpan<'a>,
{
type Item = SpanRef<'a, R>;
fn next(&mut self) -> Option<Self::Item> {
loop {
let curr = self.registry.span(self.next.as_ref()?)?;
#[cfg(all(feature = "registry", feature = "std"))]
let curr = curr.with_filter(self.filter);
self.next = curr.data.parent().cloned();
// If the `Scope` is filtered, check if the current span is enabled
// by the selected filter ID.
#[cfg(all(feature = "registry", feature = "std"))]
{
if !curr.is_enabled_for(self.filter) {
// The current span in the chain is disabled for this
// filter. Try its parent.
continue;
}
}
return Some(curr);
}
}
}
impl<'a, R> SpanRef<'a, R>
where
R: LookupSpan<'a>,
{
/// Returns this span's ID.
pub fn id(&self) -> Id {
self.data.id()
}
/// Returns a static reference to the span's metadata.
pub fn metadata(&self) -> &'static Metadata<'static> {
self.data.metadata()
}
/// Returns the span's name,
pub fn name(&self) -> &'static str {
self.data.metadata().name()
}
/// Returns a list of [fields] defined by the span.
///
/// [fields]: tracing_core::field
pub fn fields(&self) -> &FieldSet {
self.data.metadata().fields()
}
/// Returns a `SpanRef` describing this span's parent, or `None` if this
/// span is the root of its trace tree.
pub fn parent(&self) -> Option<Self> {
let id = self.data.parent()?;
let data = self.registry.span_data(id)?;
#[cfg(all(feature = "registry", feature = "std"))]
{
// move these into mut bindings if the registry feature is enabled,
// since they may be mutated in the loop.
let mut data = data;
loop {
// Is this parent enabled by our filter?
if data.is_enabled_for(self.filter) {
return Some(Self {
registry: self.registry,
filter: self.filter,
data,
});
}
// It's not enabled. If the disabled span has a parent, try that!
let id = data.parent()?;
data = self.registry.span_data(id)?;
}
}
#[cfg(not(all(feature = "registry", feature = "std")))]
Some(Self {
registry: self.registry,
data,
})
}
/// Returns an iterator over all parents of this span, starting with this span,
/// ordered from leaf to root.
///
/// The iterator will first return the span, then the span's immediate parent,
/// followed by that span's parent, and so on, until it reaches a root span.
///
/// ```rust
/// use tracing::{span, Subscriber};
/// use tracing_subscriber::{
/// layer::{Context, Layer},
/// prelude::*,
/// registry::LookupSpan,
/// };
///
/// struct PrintingLayer;
/// impl<S> Layer<S> for PrintingLayer
/// where
/// S: Subscriber + for<'lookup> LookupSpan<'lookup>,
/// {
/// fn on_enter(&self, id: &span::Id, ctx: Context<S>) {
/// let span = ctx.span(id).unwrap();
/// let scope = span.scope().map(|span| span.name()).collect::<Vec<_>>();
/// println!("Entering span: {:?}", scope);
/// }
/// }
///
/// tracing::subscriber::with_default(tracing_subscriber::registry().with(PrintingLayer), || {
/// let _root = tracing::info_span!("root").entered();
/// // Prints: Entering span: ["root"]
/// let _child = tracing::info_span!("child").entered();
/// // Prints: Entering span: ["child", "root"]
/// let _leaf = tracing::info_span!("leaf").entered();
/// // Prints: Entering span: ["leaf", "child", "root"]
/// });
/// ```
///
/// If the opposite order (from the root to this span) is desired, calling [`Scope::from_root`] on
/// the returned iterator reverses the order.
///
/// ```rust
/// # use tracing::{span, Subscriber};
/// # use tracing_subscriber::{
/// # layer::{Context, Layer},
/// # prelude::*,
/// # registry::LookupSpan,
/// # };
/// # struct PrintingLayer;
/// impl<S> Layer<S> for PrintingLayer
/// where
/// S: Subscriber + for<'lookup> LookupSpan<'lookup>,
/// {
/// fn on_enter(&self, id: &span::Id, ctx: Context<S>) {
/// let span = ctx.span(id).unwrap();
/// let scope = span.scope().from_root().map(|span| span.name()).collect::<Vec<_>>();
/// println!("Entering span: {:?}", scope);
/// }
/// }
///
/// tracing::subscriber::with_default(tracing_subscriber::registry().with(PrintingLayer), || {
/// let _root = tracing::info_span!("root").entered();
/// // Prints: Entering span: ["root"]
/// let _child = tracing::info_span!("child").entered();
/// // Prints: Entering span: ["root", "child"]
/// let _leaf = tracing::info_span!("leaf").entered();
/// // Prints: Entering span: ["root", "child", "leaf"]
/// });
/// ```
pub fn scope(&self) -> Scope<'a, R> {
Scope {
registry: self.registry,
next: Some(self.id()),
#[cfg(feature = "registry")]
filter: self.filter,
}
}
/// Returns a reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub fn extensions(&self) -> Extensions<'_> {
self.data.extensions()
}
/// Returns a mutable reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub fn extensions_mut(&self) -> ExtensionsMut<'_> {
self.data.extensions_mut()
}
#[cfg(all(feature = "registry", feature = "std"))]
pub(crate) fn try_with_filter(self, filter: FilterId) -> Option<Self> {
if self.is_enabled_for(filter) {
return Some(self.with_filter(filter));
}
None
}
#[inline]
#[cfg(all(feature = "registry", feature = "std"))]
pub(crate) fn is_enabled_for(&self, filter: FilterId) -> bool {
self.data.is_enabled_for(filter)
}
#[inline]
#[cfg(all(feature = "registry", feature = "std"))]
fn with_filter(self, filter: FilterId) -> Self {
Self { filter, ..self }
}
}
#[cfg(all(test, feature = "registry", feature = "std"))]
mod tests {
use crate::{
layer::{Context, Layer},
prelude::*,
registry::LookupSpan,
};
use std::sync::{Arc, Mutex};
use tracing::{span, Subscriber};
#[test]
fn spanref_scope_iteration_order() {
let last_entered_scope = Arc::new(Mutex::new(Vec::new()));
#[derive(Default)]
struct PrintingLayer {
last_entered_scope: Arc<Mutex<Vec<&'static str>>>,
}
impl<S> Layer<S> for PrintingLayer
where
S: Subscriber + for<'lookup> LookupSpan<'lookup>,
{
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
let span = ctx.span(id).unwrap();
let scope = span.scope().map(|span| span.name()).collect::<Vec<_>>();
*self.last_entered_scope.lock().unwrap() = scope;
}
}
let _guard = tracing::subscriber::set_default(crate::registry().with(PrintingLayer {
last_entered_scope: last_entered_scope.clone(),
}));
let _root = tracing::info_span!("root").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["root"]);
let _child = tracing::info_span!("child").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["child", "root"]);
let _leaf = tracing::info_span!("leaf").entered();
assert_eq!(
&*last_entered_scope.lock().unwrap(),
&["leaf", "child", "root"]
);
}
#[test]
fn spanref_scope_fromroot_iteration_order() {
let last_entered_scope = Arc::new(Mutex::new(Vec::new()));
#[derive(Default)]
struct PrintingLayer {
last_entered_scope: Arc<Mutex<Vec<&'static str>>>,
}
impl<S> Layer<S> for PrintingLayer
where
S: Subscriber + for<'lookup> LookupSpan<'lookup>,
{
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
let span = ctx.span(id).unwrap();
let scope = span
.scope()
.from_root()
.map(|span| span.name())
.collect::<Vec<_>>();
*self.last_entered_scope.lock().unwrap() = scope;
}
}
let _guard = tracing::subscriber::set_default(crate::registry().with(PrintingLayer {
last_entered_scope: last_entered_scope.clone(),
}));
let _root = tracing::info_span!("root").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["root"]);
let _child = tracing::info_span!("child").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["root", "child",]);
let _leaf = tracing::info_span!("leaf").entered();
assert_eq!(
&*last_entered_scope.lock().unwrap(),
&["root", "child", "leaf"]
);
}
}