blob: bdc154301a7b208fc54fc2acef8068192ea17f14 [file] [log] [blame]
//! The [`Layer`] trait, a composable abstraction for building [`Subscriber`]s.
//!
//! The [`Subscriber`] trait in `tracing-core` represents the _complete_ set of
//! functionality required to consume `tracing` instrumentation. This means that
//! a single `Subscriber` instance is a self-contained implementation of a
//! complete strategy for collecting traces; but it _also_ means that the
//! `Subscriber` trait cannot easily be composed with other `Subscriber`s.
//!
//! In particular, [`Subscriber`]s are responsible for generating [span IDs] and
//! assigning them to spans. Since these IDs must uniquely identify a span
//! within the context of the current trace, this means that there may only be
//! a single `Subscriber` for a given thread at any point in time —
//! otherwise, there would be no authoritative source of span IDs.
//!
//! On the other hand, the majority of the [`Subscriber`] trait's functionality
//! is composable: any number of subscribers may _observe_ events, span entry
//! and exit, and so on, provided that there is a single authoritative source of
//! span IDs. The [`Layer`] trait represents this composable subset of the
//! [`Subscriber`] behavior; it can _observe_ events and spans, but does not
//! assign IDs.
//!
//! # Composing Layers
//!
//! Since a [`Layer`] does not implement a complete strategy for collecting
//! traces, it must be composed with a `Subscriber` in order to be used. The
//! [`Layer`] trait is generic over a type parameter (called `S` in the trait
//! definition), representing the types of `Subscriber` they can be composed
//! with. Thus, a [`Layer`] may be implemented that will only compose with a
//! particular `Subscriber` implementation, or additional trait bounds may be
//! added to constrain what types implementing `Subscriber` a `Layer` can wrap.
//!
//! `Layer`s may be added to a `Subscriber` by using the [`SubscriberExt::with`]
//! method, which is provided by `tracing-subscriber`'s [prelude]. This method
//! returns a [`Layered`] struct that implements `Subscriber` by composing the
//! `Layer` with the `Subscriber`.
//!
//! For example:
//! ```rust
//! use tracing_subscriber::Layer;
//! use tracing_subscriber::prelude::*;
//! use tracing::Subscriber;
//!
//! pub struct MyLayer {
//! // ...
//! }
//!
//! impl<S: Subscriber> Layer<S> for MyLayer {
//! // ...
//! }
//!
//! pub struct MySubscriber {
//! // ...
//! }
//!
//! # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
//! impl Subscriber for MySubscriber {
//! // ...
//! # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
//! # fn record(&self, _: &Id, _: &Record) {}
//! # fn event(&self, _: &Event) {}
//! # fn record_follows_from(&self, _: &Id, _: &Id) {}
//! # fn enabled(&self, _: &Metadata) -> bool { false }
//! # fn enter(&self, _: &Id) {}
//! # fn exit(&self, _: &Id) {}
//! }
//! # impl MyLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl MySubscriber {
//! # fn new() -> Self { Self { }}
//! # }
//!
//! let subscriber = MySubscriber::new()
//! .with(MyLayer::new());
//!
//! tracing::subscriber::set_global_default(subscriber);
//! ```
//!
//! Multiple `Layer`s may be composed in the same manner:
//! ```rust
//! # use tracing_subscriber::{Layer, layer::SubscriberExt};
//! # use tracing::Subscriber;
//! pub struct MyOtherLayer {
//! // ...
//! }
//!
//! impl<S: Subscriber> Layer<S> for MyOtherLayer {
//! // ...
//! }
//!
//! pub struct MyThirdLayer {
//! // ...
//! }
//!
//! impl<S: Subscriber> Layer<S> for MyThirdLayer {
//! // ...
//! }
//! # pub struct MyLayer {}
//! # impl<S: Subscriber> Layer<S> for MyLayer {}
//! # pub struct MySubscriber { }
//! # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
//! # impl Subscriber for MySubscriber {
//! # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
//! # fn record(&self, _: &Id, _: &Record) {}
//! # fn event(&self, _: &Event) {}
//! # fn record_follows_from(&self, _: &Id, _: &Id) {}
//! # fn enabled(&self, _: &Metadata) -> bool { false }
//! # fn enter(&self, _: &Id) {}
//! # fn exit(&self, _: &Id) {}
//! }
//! # impl MyLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl MyOtherLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl MyThirdLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl MySubscriber {
//! # fn new() -> Self { Self { }}
//! # }
//!
//! let subscriber = MySubscriber::new()
//! .with(MyLayer::new())
//! .with(MyOtherLayer::new())
//! .with(MyThirdLayer::new());
//!
//! tracing::subscriber::set_global_default(subscriber);
//! ```
//!
//! The [`Layer::with_subscriber`] constructs the [`Layered`] type from a
//! [`Layer`] and [`Subscriber`], and is called by [`SubscriberExt::with`]. In
//! general, it is more idiomatic to use [`SubscriberExt::with`], and treat
//! [`Layer::with_subscriber`] as an implementation detail, as `with_subscriber`
//! calls must be nested, leading to less clear code for the reader.
//!
//! ## Runtime Configuration With `Layer`s
//!
//! In some cases, a particular [`Layer`] may be enabled or disabled based on
//! runtime configuration. This can introduce challenges, because the type of a
//! layered [`Subscriber`] depends on which layers are added to it: if an `if`
//! or `match` expression adds some [`Layer`] implementation in one branch,
//! and other layers in another, the [`Subscriber`] values returned by those
//! branches will have different types. For example, the following _will not_
//! work:
//!
//! ```compile_fail
//! # fn docs() -> Result<(), Box<dyn std::error::Error + 'static>> {
//! # struct Config {
//! # is_prod: bool,
//! # path: &'static str,
//! # }
//! # let cfg = Config { is_prod: false, path: "debug.log" };
//! use std::fs::File;
//! use tracing_subscriber::{Registry, prelude::*};
//!
//! let stdout_log = tracing_subscriber::fmt::layer().pretty();
//! let subscriber = Registry::default().with(stdout_log);
//!
//! // The compile error will occur here because the if and else
//! // branches have different (and therefore incompatible) types.
//! let subscriber = if cfg.is_prod {
//! let file = File::create(cfg.path)?;
//! let layer = tracing_subscriber::fmt::layer()
//! .json()
//! .with_writer(Arc::new(file));
//! layer.with(subscriber)
//! } else {
//! layer
//! };
//!
//! tracing::subscriber::set_global_default(subscriber)
//! .expect("Unable to set global subscriber");
//! # Ok(()) }
//! ```
//!
//! However, a [`Layer`] wrapped in an [`Option`] [also implements the `Layer`
//! trait][option-impl]. This allows individual layers to be enabled or disabled at
//! runtime while always producing a [`Subscriber`] of the same type. For
//! example:
//!
//! ```
//! # fn docs() -> Result<(), Box<dyn std::error::Error + 'static>> {
//! # struct Config {
//! # is_prod: bool,
//! # path: &'static str,
//! # }
//! # let cfg = Config { is_prod: false, path: "debug.log" };
//! use std::fs::File;
//! use tracing_subscriber::{Registry, prelude::*};
//!
//! let stdout_log = tracing_subscriber::fmt::layer().pretty();
//! let subscriber = Registry::default().with(stdout_log);
//!
//! // if `cfg.is_prod` is true, also log JSON-formatted logs to a file.
//! let json_log = if cfg.is_prod {
//! let file = File::create(cfg.path)?;
//! let json_log = tracing_subscriber::fmt::layer()
//! .json()
//! .with_writer(file);
//! Some(json_log)
//! } else {
//! None
//! };
//!
//! // If `cfg.is_prod` is false, then `json` will be `None`, and this layer
//! // will do nothing. However, the subscriber will still have the same type
//! // regardless of whether the `Option`'s value is `None` or `Some`.
//! let subscriber = subscriber.with(json_log);
//!
//! tracing::subscriber::set_global_default(subscriber)
//! .expect("Unable to set global subscriber");
//! # Ok(()) }
//! ```
//!
//! If a [`Layer`] may be one of several different types, note that [`Box<dyn
//! Layer<S> + Send + Sync>` implements `Layer`][box-impl].
//! This may be used to erase the type of a [`Layer`].
//!
//! For example, a function that configures a [`Layer`] to log to one of
//! several outputs might return a `Box<dyn Layer<S> + Send + Sync + 'static>`:
//! ```
//! use tracing_subscriber::{
//! Layer,
//! registry::LookupSpan,
//! prelude::*,
//! };
//! use std::{path::PathBuf, fs::File, io};
//!
//! /// Configures whether logs are emitted to a file, to stdout, or to stderr.
//! pub enum LogConfig {
//! File(PathBuf),
//! Stdout,
//! Stderr,
//! }
//!
//! impl LogConfig {
//! pub fn layer<S>(self) -> Box<dyn Layer<S> + Send + Sync + 'static>
//! where
//! S: tracing_core::Subscriber,
//! for<'a> S: LookupSpan<'a>,
//! {
//! // Shared configuration regardless of where logs are output to.
//! let fmt = tracing_subscriber::fmt::layer()
//! .with_target(true)
//! .with_thread_names(true);
//!
//! // Configure the writer based on the desired log target:
//! match self {
//! LogConfig::File(path) => {
//! let file = File::create(path).expect("failed to create log file");
//! Box::new(fmt.with_writer(file))
//! },
//! LogConfig::Stdout => Box::new(fmt.with_writer(io::stdout)),
//! LogConfig::Stderr => Box::new(fmt.with_writer(io::stderr)),
//! }
//! }
//! }
//!
//! let config = LogConfig::Stdout;
//! tracing_subscriber::registry()
//! .with(config.layer())
//! .init();
//! ```
//!
//! The [`Layer::boxed`] method is provided to make boxing a `Layer`
//! more convenient, but [`Box::new`] may be used as well.
//!
//! When the number of `Layer`s varies at runtime, note that a
//! [`Vec<L> where L: Layer` also implements `Layer`][vec-impl]. This
//! can be used to add a variable number of `Layer`s to a `Subscriber`:
//!
//! ```
//! use tracing_subscriber::{Layer, prelude::*};
//! struct MyLayer {
//! // ...
//! }
//! # impl MyLayer { fn new() -> Self { Self {} }}
//!
//! impl<S: tracing_core::Subscriber> Layer<S> for MyLayer {
//! // ...
//! }
//!
//! /// Returns how many layers we need
//! fn how_many_layers() -> usize {
//! // ...
//! # 3
//! }
//!
//! // Create a variable-length `Vec` of layers
//! let mut layers = Vec::new();
//! for _ in 0..how_many_layers() {
//! layers.push(MyLayer::new());
//! }
//!
//! tracing_subscriber::registry()
//! .with(layers)
//! .init();
//! ```
//!
//! If a variable number of `Layer` is needed and those `Layer`s have
//! different types, a `Vec` of [boxed `Layer` trait objects][box-impl] may
//! be used. For example:
//!
//! ```
//! use tracing_subscriber::{filter::LevelFilter, Layer, prelude::*};
//! use std::fs::File;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! struct Config {
//! enable_log_file: bool,
//! enable_stdout: bool,
//! enable_stderr: bool,
//! // ...
//! }
//! # impl Config {
//! # fn from_config_file()-> Result<Self, Box<dyn std::error::Error>> {
//! # // don't enable the log file so that the example doesn't actually create it
//! # Ok(Self { enable_log_file: false, enable_stdout: true, enable_stderr: true })
//! # }
//! # }
//!
//! let cfg = Config::from_config_file()?;
//!
//! // Based on our dynamically loaded config file, create any number of layers:
//! let mut layers = Vec::new();
//!
//! if cfg.enable_log_file {
//! let file = File::create("myapp.log")?;
//! let layer = tracing_subscriber::fmt::layer()
//! .with_thread_names(true)
//! .with_target(true)
//! .json()
//! .with_writer(file)
//! // Box the layer as a type-erased trait object, so that it can
//! // be pushed to the `Vec`.
//! .boxed();
//! layers.push(layer);
//! }
//!
//! if cfg.enable_stdout {
//! let layer = tracing_subscriber::fmt::layer()
//! .pretty()
//! .with_filter(LevelFilter::INFO)
//! // Box the layer as a type-erased trait object, so that it can
//! // be pushed to the `Vec`.
//! .boxed();
//! layers.push(layer);
//! }
//!
//! if cfg.enable_stdout {
//! let layer = tracing_subscriber::fmt::layer()
//! .with_target(false)
//! .with_filter(LevelFilter::WARN)
//! // Box the layer as a type-erased trait object, so that it can
//! // be pushed to the `Vec`.
//! .boxed();
//! layers.push(layer);
//! }
//!
//! tracing_subscriber::registry()
//! .with(layers)
//! .init();
//!# Ok(()) }
//! ```
//!
//! Finally, if the number of layers _changes_ at runtime, a `Vec` of
//! subscribers can be used alongside the [`reload`](crate::reload) module to
//! add or remove subscribers dynamically at runtime.
//!
//! [option-impl]: Layer#impl-Layer<S>-for-Option<L>
//! [box-impl]: Layer#impl-Layer%3CS%3E-for-Box%3Cdyn%20Layer%3CS%3E%20+%20Send%20+%20Sync%3E
//! [vec-impl]: Layer#impl-Layer<S>-for-Vec<L>
//! [prelude]: crate::prelude
//!
//! # Recording Traces
//!
//! The [`Layer`] trait defines a set of methods for consuming notifications from
//! tracing instrumentation, which are generally equivalent to the similarly
//! named methods on [`Subscriber`]. Unlike [`Subscriber`], the methods on
//! `Layer` are additionally passed a [`Context`] type, which exposes additional
//! information provided by the wrapped subscriber (such as [the current span])
//! to the layer.
//!
//! # Filtering with `Layer`s
//!
//! As well as strategies for handling trace events, the `Layer` trait may also
//! be used to represent composable _filters_. This allows the determination of
//! what spans and events should be recorded to be decoupled from _how_ they are
//! recorded: a filtering layer can be applied to other layers or
//! subscribers. `Layer`s can be used to implement _global filtering_, where a
//! `Layer` provides a filtering strategy for the entire subscriber.
//! Additionally, individual recording `Layer`s or sets of `Layer`s may be
//! combined with _per-layer filters_ that control what spans and events are
//! recorded by those layers.
//!
//! ## Global Filtering
//!
//! A `Layer` that implements a filtering strategy should override the
//! [`register_callsite`] and/or [`enabled`] methods. It may also choose to implement
//! methods such as [`on_enter`], if it wishes to filter trace events based on
//! the current span context.
//!
//! Note that the [`Layer::register_callsite`] and [`Layer::enabled`] methods
//! determine whether a span or event is enabled *globally*. Thus, they should
//! **not** be used to indicate whether an individual layer wishes to record a
//! particular span or event. Instead, if a layer is only interested in a subset
//! of trace data, but does *not* wish to disable other spans and events for the
//! rest of the layer stack should ignore those spans and events in its
//! notification methods.
//!
//! The filtering methods on a stack of `Layer`s are evaluated in a top-down
//! order, starting with the outermost `Layer` and ending with the wrapped
//! [`Subscriber`]. If any layer returns `false` from its [`enabled`] method, or
//! [`Interest::never()`] from its [`register_callsite`] method, filter
//! evaluation will short-circuit and the span or event will be disabled.
//!
//! ### Enabling Interest
//!
//! Whenever an tracing event (or span) is emitted, it goes through a number of
//! steps to determine how and how much it should be processed. The earlier an
//! event is disabled, the less work has to be done to process the event, so
//! `Layer`s that implement filtering should attempt to disable unwanted
//! events as early as possible. In order, each event checks:
//!
//! - [`register_callsite`], once per callsite (roughly: once per time that
//! `event!` or `span!` is written in the source code; this is cached at the
//! callsite). See [`Subscriber::register_callsite`] and
//! [`tracing_core::callsite`] for a summary of how this behaves.
//! - [`enabled`], once per emitted event (roughly: once per time that `event!`
//! or `span!` is *executed*), and only if `register_callsite` regesters an
//! [`Interest::sometimes`]. This is the main customization point to globally
//! filter events based on their [`Metadata`]. If an event can be disabled
//! based only on [`Metadata`], it should be, as this allows the construction
//! of the actual `Event`/`Span` to be skipped.
//! - For events only (and not spans), [`event_enabled`] is called just before
//! processing the event. This gives layers one last chance to say that
//! an event should be filtered out, now that the event's fields are known.
//!
//! ## Per-Layer Filtering
//!
//! **Note**: per-layer filtering APIs currently require the [`"registry"` crate
//! feature flag][feat] to be enabled.
//!
//! Sometimes, it may be desirable for one `Layer` to record a particular subset
//! of spans and events, while a different subset of spans and events are
//! recorded by other `Layer`s. For example:
//!
//! - A layer that records metrics may wish to observe only events including
//! particular tracked values, while a logging layer ignores those events.
//! - If recording a distributed trace is expensive, it might be desirable to
//! only send spans with `INFO` and lower verbosity to the distributed tracing
//! system, while logging more verbose spans to a file.
//! - Spans and events with a particular target might be recorded differently
//! from others, such as by generating an HTTP access log from a span that
//! tracks the lifetime of an HTTP request.
//!
//! The [`Filter`] trait is used to control what spans and events are
//! observed by an individual `Layer`, while still allowing other `Layer`s to
//! potentially record them. The [`Layer::with_filter`] method combines a
//! `Layer` with a [`Filter`], returning a [`Filtered`] layer.
//!
//! This crate's [`filter`] module provides a number of types which implement
//! the [`Filter`] trait, such as [`LevelFilter`], [`Targets`], and
//! [`FilterFn`]. These [`Filter`]s provide ready-made implementations of
//! common forms of filtering. For custom filtering policies, the [`FilterFn`]
//! and [`DynFilterFn`] types allow implementing a [`Filter`] with a closure or
//! function pointer. In addition, when more control is required, the [`Filter`]
//! trait may also be implemented for user-defined types.
//!
//! <pre class="compile_fail" style="white-space:normal;font:inherit;">
//! <strong>Warning</strong>: Currently, the <a href="../struct.Registry.html">
//! <code>Registry</code></a> type defined in this crate is the only root
//! <code>Subscriber</code> capable of supporting <code>Layer</code>s with
//! per-layer filters. In the future, new APIs will be added to allow other
//! root <code>Subscriber</code>s to support per-layer filters.
//! </pre>
//!
//! For example, to generate an HTTP access log based on spans with
//! the `http_access` target, while logging other spans and events to
//! standard out, a [`Filter`] can be added to the access log layer:
//!
//! ```
//! use tracing_subscriber::{filter, prelude::*};
//!
//! // Generates an HTTP access log.
//! let access_log = // ...
//! # filter::LevelFilter::INFO;
//!
//! // Add a filter to the access log layer so that it only observes
//! // spans and events with the `http_access` target.
//! let access_log = access_log.with_filter(filter::filter_fn(|metadata| {
//! // Returns `true` if and only if the span or event's target is
//! // "http_access".
//! metadata.target() == "http_access"
//! }));
//!
//! // A general-purpose logging layer.
//! let fmt_layer = tracing_subscriber::fmt::layer();
//!
//! // Build a subscriber that combines the access log and stdout log
//! // layers.
//! tracing_subscriber::registry()
//! .with(fmt_layer)
//! .with(access_log)
//! .init();
//! ```
//!
//! Multiple layers can have their own, separate per-layer filters. A span or
//! event will be recorded if it is enabled by _any_ per-layer filter, but it
//! will be skipped by the layers whose filters did not enable it. Building on
//! the previous example:
//!
//! ```
//! use tracing_subscriber::{filter::{filter_fn, LevelFilter}, prelude::*};
//!
//! let access_log = // ...
//! # LevelFilter::INFO;
//! let fmt_layer = tracing_subscriber::fmt::layer();
//!
//! tracing_subscriber::registry()
//! // Add the filter for the "http_access" target to the access
//! // log layer, like before.
//! .with(access_log.with_filter(filter_fn(|metadata| {
//! metadata.target() == "http_access"
//! })))
//! // Add a filter for spans and events with the INFO level
//! // and below to the logging layer.
//! .with(fmt_layer.with_filter(LevelFilter::INFO))
//! .init();
//!
//! // Neither layer will observe this event
//! tracing::debug!(does_anyone_care = false, "a tree fell in the forest");
//!
//! // This event will be observed by the logging layer, but not
//! // by the access log layer.
//! tracing::warn!(dose_roentgen = %3.8, "not great, but not terrible");
//!
//! // This event will be observed only by the access log layer.
//! tracing::trace!(target: "http_access", "HTTP request started");
//!
//! // Both layers will observe this event.
//! tracing::error!(target: "http_access", "HTTP request failed with a very bad error!");
//! ```
//!
//! A per-layer filter can be applied to multiple [`Layer`]s at a time, by
//! combining them into a [`Layered`] layer using [`Layer::and_then`], and then
//! calling [`Layer::with_filter`] on the resulting [`Layered`] layer.
//!
//! Consider the following:
//! - `layer_a` and `layer_b`, which should only receive spans and events at
//! the [`INFO`] [level] and above.
//! - A third layer, `layer_c`, which should receive spans and events at
//! the [`DEBUG`] [level] as well.
//! The layers and filters would be composed thusly:
//!
//! ```
//! use tracing_subscriber::{filter::LevelFilter, prelude::*};
//!
//! let layer_a = // ...
//! # LevelFilter::INFO;
//! let layer_b = // ...
//! # LevelFilter::INFO;
//! let layer_c = // ...
//! # LevelFilter::INFO;
//!
//! let info_layers = layer_a
//! // Combine `layer_a` and `layer_b` into a `Layered` layer:
//! .and_then(layer_b)
//! // ...and then add an `INFO` `LevelFilter` to that layer:
//! .with_filter(LevelFilter::INFO);
//!
//! tracing_subscriber::registry()
//! // Add `layer_c` with a `DEBUG` filter.
//! .with(layer_c.with_filter(LevelFilter::DEBUG))
//! .with(info_layers)
//! .init();
//!```
//!
//! If a [`Filtered`] [`Layer`] is combined with another [`Layer`]
//! [`Layer::and_then`], and a filter is added to the [`Layered`] layer, that
//! layer will be filtered by *both* the inner filter and the outer filter.
//! Only spans and events that are enabled by *both* filters will be
//! observed by that layer. This can be used to implement complex filtering
//! trees.
//!
//! As an example, consider the following constraints:
//! - Suppose that a particular [target] is used to indicate events that
//! should be counted as part of a metrics system, which should be only
//! observed by a layer that collects metrics.
//! - A log of high-priority events ([`INFO`] and above) should be logged
//! to stdout, while more verbose events should be logged to a debugging log file.
//! - Metrics-focused events should *not* be included in either log output.
//!
//! In that case, it is possible to apply a filter to both logging layers to
//! exclude the metrics events, while additionally adding a [`LevelFilter`]
//! to the stdout log:
//!
//! ```
//! # // wrap this in a function so we don't actually create `debug.log` when
//! # // running the doctests..
//! # fn docs() -> Result<(), Box<dyn std::error::Error + 'static>> {
//! use tracing_subscriber::{filter, prelude::*};
//! use std::{fs::File, sync::Arc};
//!
//! // A layer that logs events to stdout using the human-readable "pretty"
//! // format.
//! let stdout_log = tracing_subscriber::fmt::layer()
//! .pretty();
//!
//! // A layer that logs events to a file.
//! let file = File::create("debug.log")?;
//! let debug_log = tracing_subscriber::fmt::layer()
//! .with_writer(Arc::new(file));
//!
//! // A layer that collects metrics using specific events.
//! let metrics_layer = /* ... */ filter::LevelFilter::INFO;
//!
//! tracing_subscriber::registry()
//! .with(
//! stdout_log
//! // Add an `INFO` filter to the stdout logging layer
//! .with_filter(filter::LevelFilter::INFO)
//! // Combine the filtered `stdout_log` layer with the
//! // `debug_log` layer, producing a new `Layered` layer.
//! .and_then(debug_log)
//! // Add a filter to *both* layers that rejects spans and
//! // events whose targets start with `metrics`.
//! .with_filter(filter::filter_fn(|metadata| {
//! !metadata.target().starts_with("metrics")
//! }))
//! )
//! .with(
//! // Add a filter to the metrics label that *only* enables
//! // events whose targets start with `metrics`.
//! metrics_layer.with_filter(filter::filter_fn(|metadata| {
//! metadata.target().starts_with("metrics")
//! }))
//! )
//! .init();
//!
//! // This event will *only* be recorded by the metrics layer.
//! tracing::info!(target: "metrics::cool_stuff_count", value = 42);
//!
//! // This event will only be seen by the debug log file layer:
//! tracing::debug!("this is a message, and part of a system of messages");
//!
//! // This event will be seen by both the stdout log layer *and*
//! // the debug log file layer, but not by the metrics layer.
//! tracing::warn!("the message is a warning about danger!");
//! # Ok(()) }
//! ```
//!
//! [`Subscriber`]: tracing_core::subscriber::Subscriber
//! [span IDs]: tracing_core::span::Id
//! [the current span]: Context::current_span
//! [`register_callsite`]: Layer::register_callsite
//! [`enabled`]: Layer::enabled
//! [`event_enabled`]: Layer::event_enabled
//! [`on_enter`]: Layer::on_enter
//! [`Layer::register_callsite`]: Layer::register_callsite
//! [`Layer::enabled`]: Layer::enabled
//! [`Interest::never()`]: tracing_core::subscriber::Interest::never()
//! [`Filtered`]: crate::filter::Filtered
//! [`filter`]: crate::filter
//! [`Targets`]: crate::filter::Targets
//! [`FilterFn`]: crate::filter::FilterFn
//! [`DynFilterFn`]: crate::filter::DynFilterFn
//! [level]: tracing_core::Level
//! [`INFO`]: tracing_core::Level::INFO
//! [`DEBUG`]: tracing_core::Level::DEBUG
//! [target]: tracing_core::Metadata::target
//! [`LevelFilter`]: crate::filter::LevelFilter
//! [feat]: crate#feature-flags
use crate::filter;
use tracing_core::{
metadata::Metadata,
span,
subscriber::{Interest, Subscriber},
Dispatch, Event, LevelFilter,
};
use core::any::TypeId;
feature! {
#![feature = "alloc"]
use alloc::boxed::Box;
use core::ops::{Deref, DerefMut};
}
mod context;
mod layered;
pub use self::{context::*, layered::*};
// The `tests` module is `pub(crate)` because it contains test utilities used by
// other modules.
#[cfg(test)]
pub(crate) mod tests;
/// A composable handler for `tracing` events.
///
/// A `Layer` implements a behavior for recording or collecting traces that can
/// be composed together with other `Layer`s to build a [`Subscriber`]. See the
/// [module-level documentation](crate::layer) for details.
///
/// [`Subscriber`]: tracing_core::Subscriber
#[cfg_attr(docsrs, doc(notable_trait))]
pub trait Layer<S>
where
S: Subscriber,
Self: 'static,
{
/// Performs late initialization when installing this layer as a
/// [`Subscriber`].
///
/// ## Avoiding Memory Leaks
///
/// `Layer`s should not store the [`Dispatch`] pointing to the [`Subscriber`]
/// that they are a part of. Because the `Dispatch` owns the `Subscriber`,
/// storing the `Dispatch` within the `Subscriber` will create a reference
/// count cycle, preventing the `Dispatch` from ever being dropped.
///
/// Instead, when it is necessary to store a cyclical reference to the
/// `Dispatch` within a `Layer`, use [`Dispatch::downgrade`] to convert a
/// `Dispatch` into a [`WeakDispatch`]. This type is analogous to
/// [`std::sync::Weak`], and does not create a reference count cycle. A
/// [`WeakDispatch`] can be stored within a subscriber without causing a
/// memory leak, and can be [upgraded] into a `Dispatch` temporarily when
/// the `Dispatch` must be accessed by the subscriber.
///
/// [`WeakDispatch`]: tracing_core::dispatcher::WeakDispatch
/// [upgraded]: tracing_core::dispatcher::WeakDispatch::upgrade
/// [`Subscriber`]: tracing_core::Subscriber
fn on_register_dispatch(&self, collector: &Dispatch) {
let _ = collector;
}
/// Performs late initialization when attaching a `Layer` to a
/// [`Subscriber`].
///
/// This is a callback that is called when the `Layer` is added to a
/// [`Subscriber`] (e.g. in [`Layer::with_subscriber`] and
/// [`SubscriberExt::with`]). Since this can only occur before the
/// [`Subscriber`] has been set as the default, both the `Layer` and
/// [`Subscriber`] are passed to this method _mutably_. This gives the
/// `Layer` the opportunity to set any of its own fields with values
/// recieved by method calls on the [`Subscriber`].
///
/// For example, [`Filtered`] layers implement `on_layer` to call the
/// [`Subscriber`]'s [`register_filter`] method, and store the returned
/// [`FilterId`] as a field.
///
/// **Note** In most cases, `Layer` implementations will not need to
/// implement this method. However, in cases where a type implementing
/// `Layer` wraps one or more other types that implement `Layer`, like the
/// [`Layered`] and [`Filtered`] types in this crate, that type MUST ensure
/// that the inner `Layer`s' `on_layer` methods are called. Otherwise,
/// functionality that relies on `on_layer`, such as [per-layer filtering],
/// may not work correctly.
///
/// [`Filtered`]: crate::filter::Filtered
/// [`register_filter`]: crate::registry::LookupSpan::register_filter
/// [per-layer filtering]: #per-layer-filtering
/// [`FilterId`]: crate::filter::FilterId
fn on_layer(&mut self, subscriber: &mut S) {
let _ = subscriber;
}
/// Registers a new callsite with this layer, returning whether or not
/// the layer is interested in being notified about the callsite, similarly
/// to [`Subscriber::register_callsite`].
///
/// By default, this returns [`Interest::always()`] if [`self.enabled`] returns
/// true, or [`Interest::never()`] if it returns false.
///
/// <pre class="ignore" style="white-space:normal;font:inherit;">
/// <strong>Note</strong>: This method (and <a href="#method.enabled">
/// <code>Layer::enabled</code></a>) determine whether a span or event is
/// globally enabled, <em>not</em> whether the individual layer will be
/// notified about that span or event. This is intended to be used
/// by layers that implement filtering for the entire stack. Layers which do
/// not wish to be notified about certain spans or events but do not wish to
/// globally disable them should ignore those spans or events in their
/// <a href="#method.on_event"><code>on_event</code></a>,
/// <a href="#method.on_enter"><code>on_enter</code></a>,
/// <a href="#method.on_exit"><code>on_exit</code></a>, and other notification
/// methods.
/// </pre>
///
/// See [the trait-level documentation] for more information on filtering
/// with `Layer`s.
///
/// Layers may also implement this method to perform any behaviour that
/// should be run once per callsite. If the layer wishes to use
/// `register_callsite` for per-callsite behaviour, but does not want to
/// globally enable or disable those callsites, it should always return
/// [`Interest::always()`].
///
/// [`Interest`]: tracing_core::Interest
/// [`Subscriber::register_callsite`]: tracing_core::Subscriber::register_callsite()
/// [`Interest::never()`]: tracing_core::subscriber::Interest::never()
/// [`Interest::always()`]: tracing_core::subscriber::Interest::always()
/// [`self.enabled`]: Layer::enabled()
/// [`Layer::enabled`]: Layer::enabled()
/// [`on_event`]: Layer::on_event()
/// [`on_enter`]: Layer::on_enter()
/// [`on_exit`]: Layer::on_exit()
/// [the trait-level documentation]: #filtering-with-layers
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
if self.enabled(metadata, Context::none()) {
Interest::always()
} else {
Interest::never()
}
}
/// Returns `true` if this layer is interested in a span or event with the
/// given `metadata` in the current [`Context`], similarly to
/// [`Subscriber::enabled`].
///
/// By default, this always returns `true`, allowing the wrapped subscriber
/// to choose to disable the span.
///
/// <pre class="ignore" style="white-space:normal;font:inherit;">
/// <strong>Note</strong>: This method (and <a href="#method.register_callsite">
/// <code>Layer::register_callsite</code></a>) determine whether a span or event is
/// globally enabled, <em>not</em> whether the individual layer will be
/// notified about that span or event. This is intended to be used
/// by layers that implement filtering for the entire stack. Layers which do
/// not wish to be notified about certain spans or events but do not wish to
/// globally disable them should ignore those spans or events in their
/// <a href="#method.on_event"><code>on_event</code></a>,
/// <a href="#method.on_enter"><code>on_enter</code></a>,
/// <a href="#method.on_exit"><code>on_exit</code></a>, and other notification
/// methods.
/// </pre>
///
///
/// See [the trait-level documentation] for more information on filtering
/// with `Layer`s.
///
/// [`Interest`]: tracing_core::Interest
/// [`Subscriber::enabled`]: tracing_core::Subscriber::enabled()
/// [`Layer::register_callsite`]: Layer::register_callsite()
/// [`on_event`]: Layer::on_event()
/// [`on_enter`]: Layer::on_enter()
/// [`on_exit`]: Layer::on_exit()
/// [the trait-level documentation]: #filtering-with-layers
fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
let _ = (metadata, ctx);
true
}
/// Notifies this layer that a new span was constructed with the given
/// `Attributes` and `Id`.
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
let _ = (attrs, id, ctx);
}
// TODO(eliza): do we want this to be a public API? If we end up moving
// filtering layers to a separate trait, we may no longer want `Layer`s to
// be able to participate in max level hinting...
#[doc(hidden)]
fn max_level_hint(&self) -> Option<LevelFilter> {
None
}
/// Notifies this layer that a span with the given `Id` recorded the given
/// `values`.
// Note: it's unclear to me why we'd need the current span in `record` (the
// only thing the `Context` type currently provides), but passing it in anyway
// seems like a good future-proofing measure as it may grow other methods later...
fn on_record(&self, _span: &span::Id, _values: &span::Record<'_>, _ctx: Context<'_, S>) {}
/// Notifies this layer that a span with the ID `span` recorded that it
/// follows from the span with the ID `follows`.
// Note: it's unclear to me why we'd need the current span in `record` (the
// only thing the `Context` type currently provides), but passing it in anyway
// seems like a good future-proofing measure as it may grow other methods later...
fn on_follows_from(&self, _span: &span::Id, _follows: &span::Id, _ctx: Context<'_, S>) {}
/// Called before [`on_event`], to determine if `on_event` should be called.
///
/// <div class="example-wrap" style="display:inline-block">
/// <pre class="ignore" style="white-space:normal;font:inherit;">
///
/// **Note**: This method determines whether an event is globally enabled,
/// *not* whether the individual `Layer` will be notified about the
/// event. This is intended to be used by `Layer`s that implement
/// filtering for the entire stack. `Layer`s which do not wish to be
/// notified about certain events but do not wish to globally disable them
/// should ignore those events in their [on_event][Self::on_event].
///
/// </pre></div>
///
/// See [the trait-level documentation] for more information on filtering
/// with `Layer`s.
///
/// [`on_event`]: Self::on_event
/// [`Interest`]: tracing_core::Interest
/// [the trait-level documentation]: #filtering-with-layers
#[inline] // collapse this to a constant please mrs optimizer
fn event_enabled(&self, _event: &Event<'_>, _ctx: Context<'_, S>) -> bool {
true
}
/// Notifies this layer that an event has occurred.
fn on_event(&self, _event: &Event<'_>, _ctx: Context<'_, S>) {}
/// Notifies this layer that a span with the given ID was entered.
fn on_enter(&self, _id: &span::Id, _ctx: Context<'_, S>) {}
/// Notifies this layer that the span with the given ID was exited.
fn on_exit(&self, _id: &span::Id, _ctx: Context<'_, S>) {}
/// Notifies this layer that the span with the given ID has been closed.
fn on_close(&self, _id: span::Id, _ctx: Context<'_, S>) {}
/// Notifies this layer that a span ID has been cloned, and that the
/// subscriber returned a different ID.
fn on_id_change(&self, _old: &span::Id, _new: &span::Id, _ctx: Context<'_, S>) {}
/// Composes this layer around the given `Layer`, returning a `Layered`
/// struct implementing `Layer`.
///
/// The returned `Layer` will call the methods on this `Layer` and then
/// those of the new `Layer`, before calling the methods on the subscriber
/// it wraps. For example:
///
/// ```rust
/// # use tracing_subscriber::layer::Layer;
/// # use tracing_core::Subscriber;
/// pub struct FooLayer {
/// // ...
/// }
///
/// pub struct BarLayer {
/// // ...
/// }
///
/// pub struct MySubscriber {
/// // ...
/// }
///
/// impl<S: Subscriber> Layer<S> for FooLayer {
/// // ...
/// }
///
/// impl<S: Subscriber> Layer<S> for BarLayer {
/// // ...
/// }
///
/// # impl FooLayer {
/// # fn new() -> Self { Self {} }
/// # }
/// # impl BarLayer {
/// # fn new() -> Self { Self { }}
/// # }
/// # impl MySubscriber {
/// # fn new() -> Self { Self { }}
/// # }
/// # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
/// # impl tracing_core::Subscriber for MySubscriber {
/// # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
/// # fn record(&self, _: &Id, _: &Record) {}
/// # fn event(&self, _: &Event) {}
/// # fn record_follows_from(&self, _: &Id, _: &Id) {}
/// # fn enabled(&self, _: &Metadata) -> bool { false }
/// # fn enter(&self, _: &Id) {}
/// # fn exit(&self, _: &Id) {}
/// # }
/// let subscriber = FooLayer::new()
/// .and_then(BarLayer::new())
/// .with_subscriber(MySubscriber::new());
/// ```
///
/// Multiple layers may be composed in this manner:
///
/// ```rust
/// # use tracing_subscriber::layer::Layer;
/// # use tracing_core::Subscriber;
/// # pub struct FooLayer {}
/// # pub struct BarLayer {}
/// # pub struct MySubscriber {}
/// # impl<S: Subscriber> Layer<S> for FooLayer {}
/// # impl<S: Subscriber> Layer<S> for BarLayer {}
/// # impl FooLayer {
/// # fn new() -> Self { Self {} }
/// # }
/// # impl BarLayer {
/// # fn new() -> Self { Self { }}
/// # }
/// # impl MySubscriber {
/// # fn new() -> Self { Self { }}
/// # }
/// # use tracing_core::{span::{Id, Attributes, Record}, Metadata, Event};
/// # impl tracing_core::Subscriber for MySubscriber {
/// # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(1) }
/// # fn record(&self, _: &Id, _: &Record) {}
/// # fn event(&self, _: &Event) {}
/// # fn record_follows_from(&self, _: &Id, _: &Id) {}
/// # fn enabled(&self, _: &Metadata) -> bool { false }
/// # fn enter(&self, _: &Id) {}
/// # fn exit(&self, _: &Id) {}
/// # }
/// pub struct BazLayer {
/// // ...
/// }
///
/// impl<S: Subscriber> Layer<S> for BazLayer {
/// // ...
/// }
/// # impl BazLayer { fn new() -> Self { BazLayer {} } }
///
/// let subscriber = FooLayer::new()
/// .and_then(BarLayer::new())
/// .and_then(BazLayer::new())
/// .with_subscriber(MySubscriber::new());
/// ```
fn and_then<L>(self, layer: L) -> Layered<L, Self, S>
where
L: Layer<S>,
Self: Sized,
{
let inner_has_layer_filter = filter::layer_has_plf(&self);
Layered::new(layer, self, inner_has_layer_filter)
}
/// Composes this `Layer` with the given [`Subscriber`], returning a
/// `Layered` struct that implements [`Subscriber`].
///
/// The returned `Layered` subscriber will call the methods on this `Layer`
/// and then those of the wrapped subscriber.
///
/// For example:
/// ```rust
/// # use tracing_subscriber::layer::Layer;
/// # use tracing_core::Subscriber;
/// pub struct FooLayer {
/// // ...
/// }
///
/// pub struct MySubscriber {
/// // ...
/// }
///
/// impl<S: Subscriber> Layer<S> for FooLayer {
/// // ...
/// }
///
/// # impl FooLayer {
/// # fn new() -> Self { Self {} }
/// # }
/// # impl MySubscriber {
/// # fn new() -> Self { Self { }}
/// # }
/// # use tracing_core::{span::{Id, Attributes, Record}, Metadata};
/// # impl tracing_core::Subscriber for MySubscriber {
/// # fn new_span(&self, _: &Attributes) -> Id { Id::from_u64(0) }
/// # fn record(&self, _: &Id, _: &Record) {}
/// # fn event(&self, _: &tracing_core::Event) {}
/// # fn record_follows_from(&self, _: &Id, _: &Id) {}
/// # fn enabled(&self, _: &Metadata) -> bool { false }
/// # fn enter(&self, _: &Id) {}
/// # fn exit(&self, _: &Id) {}
/// # }
/// let subscriber = FooLayer::new()
/// .with_subscriber(MySubscriber::new());
///```
///
/// [`Subscriber`]: tracing_core::Subscriber
fn with_subscriber(mut self, mut inner: S) -> Layered<Self, S>
where
Self: Sized,
{
let inner_has_layer_filter = filter::subscriber_has_plf(&inner);
self.on_layer(&mut inner);
Layered::new(self, inner, inner_has_layer_filter)
}
/// Combines `self` with a [`Filter`], returning a [`Filtered`] layer.
///
/// The [`Filter`] will control which spans and events are enabled for
/// this layer. See [the trait-level documentation][plf] for details on
/// per-layer filtering.
///
/// [`Filtered`]: crate::filter::Filtered
/// [plf]: crate::layer#per-layer-filtering
#[cfg(all(feature = "registry", feature = "std"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "registry", feature = "std"))))]
fn with_filter<F>(self, filter: F) -> filter::Filtered<Self, F, S>
where
Self: Sized,
F: Filter<S>,
{
filter::Filtered::new(self, filter)
}
/// Erases the type of this [`Layer`], returning a [`Box`]ed `dyn
/// Layer` trait object.
///
/// This can be used when a function returns a `Layer` which may be of
/// one of several types, or when a `Layer` subscriber has a very long type
/// signature.
///
/// # Examples
///
/// The following example will *not* compile, because the value assigned to
/// `log_layer` may have one of several different types:
///
/// ```compile_fail
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use tracing_subscriber::{Layer, filter::LevelFilter, prelude::*};
/// use std::{path::PathBuf, fs::File, io};
///
/// /// Configures whether logs are emitted to a file, to stdout, or to stderr.
/// pub enum LogConfig {
/// File(PathBuf),
/// Stdout,
/// Stderr,
/// }
///
/// let config = // ...
/// # LogConfig::Stdout;
///
/// // Depending on the config, construct a layer of one of several types.
/// let log_layer = match config {
/// // If logging to a file, use a maximally-verbose configuration.
/// LogConfig::File(path) => {
/// let file = File::create(path)?;
/// tracing_subscriber::fmt::layer()
/// .with_thread_ids(true)
/// .with_thread_names(true)
/// // Selecting the JSON logging format changes the layer's
/// // type.
/// .json()
/// .with_span_list(true)
/// // Setting the writer to use our log file changes the
/// // layer's type again.
/// .with_writer(file)
/// },
///
/// // If logging to stdout, use a pretty, human-readable configuration.
/// LogConfig::Stdout => tracing_subscriber::fmt::layer()
/// // Selecting the "pretty" logging format changes the
/// // layer's type!
/// .pretty()
/// .with_writer(io::stdout)
/// // Add a filter based on the RUST_LOG environment variable;
/// // this changes the type too!
/// .and_then(tracing_subscriber::EnvFilter::from_default_env()),
///
/// // If logging to stdout, only log errors and warnings.
/// LogConfig::Stderr => tracing_subscriber::fmt::layer()
/// // Changing the writer changes the layer's type
/// .with_writer(io::stderr)
/// // Only log the `WARN` and `ERROR` levels. Adding a filter
/// // changes the layer's type to `Filtered<LevelFilter, ...>`.
/// .with_filter(LevelFilter::WARN),
/// };
///
/// tracing_subscriber::registry()
/// .with(log_layer)
/// .init();
/// # Ok(()) }
/// ```
///
/// However, adding a call to `.boxed()` after each match arm erases the
/// layer's type, so this code *does* compile:
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # use tracing_subscriber::{Layer, filter::LevelFilter, prelude::*};
/// # use std::{path::PathBuf, fs::File, io};
/// # pub enum LogConfig {
/// # File(PathBuf),
/// # Stdout,
/// # Stderr,
/// # }
/// # let config = LogConfig::Stdout;
/// let log_layer = match config {
/// LogConfig::File(path) => {
/// let file = File::create(path)?;
/// tracing_subscriber::fmt::layer()
/// .with_thread_ids(true)
/// .with_thread_names(true)
/// .json()
/// .with_span_list(true)
/// .with_writer(file)
/// // Erase the type by boxing the layer
/// .boxed()
/// },
///
/// LogConfig::Stdout => tracing_subscriber::fmt::layer()
/// .pretty()
/// .with_writer(io::stdout)
/// .and_then(tracing_subscriber::EnvFilter::from_default_env())
/// // Erase the type by boxing the layer
/// .boxed(),
///
/// LogConfig::Stderr => tracing_subscriber::fmt::layer()
/// .with_writer(io::stderr)
/// .with_filter(LevelFilter::WARN)
/// // Erase the type by boxing the layer
/// .boxed(),
/// };
///
/// tracing_subscriber::registry()
/// .with(log_layer)
/// .init();
/// # Ok(()) }
/// ```
#[cfg(any(feature = "alloc", feature = "std"))]
#[cfg_attr(docsrs, doc(cfg(any(feature = "alloc", feature = "std"))))]
fn boxed(self) -> Box<dyn Layer<S> + Send + Sync + 'static>
where
Self: Sized,
Self: Layer<S> + Send + Sync + 'static,
S: Subscriber,
{
Box::new(self)
}
#[doc(hidden)]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
if id == TypeId::of::<Self>() {
Some(self as *const _ as *const ())
} else {
None
}
}
}
feature! {
#![all(feature = "registry", feature = "std")]
/// A per-[`Layer`] filter that determines whether a span or event is enabled
/// for an individual layer.
///
/// See [the module-level documentation][plf] for details on using [`Filter`]s.
///
/// [plf]: crate::layer#per-layer-filtering
#[cfg_attr(docsrs, doc(notable_trait))]
pub trait Filter<S> {
/// Returns `true` if this layer is interested in a span or event with the
/// given [`Metadata`] in the current [`Context`], similarly to
/// [`Subscriber::enabled`].
///
/// If this returns `false`, the span or event will be disabled _for the
/// wrapped [`Layer`]_. Unlike [`Layer::enabled`], the span or event will
/// still be recorded if any _other_ layers choose to enable it. However,
/// the layer [filtered] by this filter will skip recording that span or
/// event.
///
/// If all layers indicate that they do not wish to see this span or event,
/// it will be disabled.
///
/// [`metadata`]: tracing_core::Metadata
/// [`Subscriber::enabled`]: tracing_core::Subscriber::enabled
/// [filtered]: crate::filter::Filtered
fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool;
/// Returns an [`Interest`] indicating whether this layer will [always],
/// [sometimes], or [never] be interested in the given [`Metadata`].
///
/// When a given callsite will [always] or [never] be enabled, the results
/// of evaluating the filter may be cached for improved performance.
/// Therefore, if a filter is capable of determining that it will always or
/// never enable a particular callsite, providing an implementation of this
/// function is recommended.
///
/// <pre class="ignore" style="white-space:normal;font:inherit;">
/// <strong>Note</strong>: If a <code>Filter</code> will perform
/// <em>dynamic filtering</em> that depends on the current context in which
/// a span or event was observered (e.g. only enabling an event when it
/// occurs within a particular span), it <strong>must</strong> return
/// <code>Interest::sometimes()</code> from this method. If it returns
/// <code>Interest::always()</code> or <code>Interest::never()</code>, the
/// <code>enabled</code> method may not be called when a particular instance
/// of that span or event is recorded.
/// </pre>
///
/// This method is broadly similar to [`Subscriber::register_callsite`];
/// however, since the returned value represents only the interest of
/// *this* layer, the resulting behavior is somewhat different.
///
/// If a [`Subscriber`] returns [`Interest::always()`][always] or
/// [`Interest::never()`][never] for a given [`Metadata`], its [`enabled`]
/// method is then *guaranteed* to never be called for that callsite. On the
/// other hand, when a `Filter` returns [`Interest::always()`][always] or
/// [`Interest::never()`][never] for a callsite, _other_ [`Layer`]s may have
/// differing interests in that callsite. If this is the case, the callsite
/// will recieve [`Interest::sometimes()`][sometimes], and the [`enabled`]
/// method will still be called for that callsite when it records a span or
/// event.
///
/// Returning [`Interest::always()`][always] or [`Interest::never()`][never] from
/// `Filter::callsite_enabled` will permanently enable or disable a
/// callsite (without requiring subsequent calls to [`enabled`]) if and only
/// if the following is true:
///
/// - all [`Layer`]s that comprise the subscriber include `Filter`s
/// (this includes a tree of [`Layered`] layers that share the same
/// `Filter`)
/// - all those `Filter`s return the same [`Interest`].
///
/// For example, if a [`Subscriber`] consists of two [`Filtered`] layers,
/// and both of those layers return [`Interest::never()`][never], that
/// callsite *will* never be enabled, and the [`enabled`] methods of those
/// [`Filter`]s will not be called.
///
/// ## Default Implementation
///
/// The default implementation of this method assumes that the
/// `Filter`'s [`enabled`] method _may_ perform dynamic filtering, and
/// returns [`Interest::sometimes()`][sometimes], to ensure that [`enabled`]
/// is called to determine whether a particular _instance_ of the callsite
/// is enabled in the current context. If this is *not* the case, and the
/// `Filter`'s [`enabled`] method will always return the same result
/// for a particular [`Metadata`], this method can be overridden as
/// follows:
///
/// ```
/// use tracing_subscriber::layer;
/// use tracing_core::{Metadata, subscriber::Interest};
///
/// struct MyFilter {
/// // ...
/// }
///
/// impl MyFilter {
/// // The actual logic for determining whether a `Metadata` is enabled
/// // must be factored out from the `enabled` method, so that it can be
/// // called without a `Context` (which is not provided to the
/// // `callsite_enabled` method).
/// fn is_enabled(&self, metadata: &Metadata<'_>) -> bool {
/// // ...
/// # drop(metadata); true
/// }
/// }
///
/// impl<S> layer::Filter<S> for MyFilter {
/// fn enabled(&self, metadata: &Metadata<'_>, _: &layer::Context<'_, S>) -> bool {
/// // Even though we are implementing `callsite_enabled`, we must still provide a
/// // working implementation of `enabled`, as returning `Interest::always()` or
/// // `Interest::never()` will *allow* caching, but will not *guarantee* it.
/// // Other filters may still return `Interest::sometimes()`, so we may be
/// // asked again in `enabled`.
/// self.is_enabled(metadata)
/// }
///
/// fn callsite_enabled(&self, metadata: &'static Metadata<'static>) -> Interest {
/// // The result of `self.enabled(metadata, ...)` will always be
/// // the same for any given `Metadata`, so we can convert it into
/// // an `Interest`:
/// if self.is_enabled(metadata) {
/// Interest::always()
/// } else {
/// Interest::never()
/// }
/// }
/// }
/// ```
///
/// [`Metadata`]: tracing_core::Metadata
/// [`Interest`]: tracing_core::Interest
/// [always]: tracing_core::Interest::always
/// [sometimes]: tracing_core::Interest::sometimes
/// [never]: tracing_core::Interest::never
/// [`Subscriber::register_callsite`]: tracing_core::Subscriber::register_callsite
/// [`Subscriber`]: tracing_core::Subscriber
/// [`enabled`]: Filter::enabled
/// [`Filtered`]: crate::filter::Filtered
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
let _ = meta;
Interest::sometimes()
}
/// Called before the filtered [`Layer]'s [`on_event`], to determine if
/// `on_event` should be called.
///
/// This gives a chance to filter events based on their fields. Note,
/// however, that this *does not* override [`enabled`], and is not even
/// called if [`enabled`] returns `false`.
///
/// ## Default Implementation
///
/// By default, this method returns `true`, indicating that no events are
/// filtered out based on their fields.
///
/// [`enabled`]: crate::layer::Filter::enabled
/// [`on_event`]: crate::layer::Layer::on_event
#[inline] // collapse this to a constant please mrs optimizer
fn event_enabled(&self, event: &Event<'_>, cx: &Context<'_, S>) -> bool {
let _ = (event, cx);
true
}
/// Returns an optional hint of the highest [verbosity level][level] that
/// this `Filter` will enable.
///
/// If this method returns a [`LevelFilter`], it will be used as a hint to
/// determine the most verbose level that will be enabled. This will allow
/// spans and events which are more verbose than that level to be skipped
/// more efficiently. An implementation of this method is optional, but
/// strongly encouraged.
///
/// If the maximum level the `Filter` will enable can change over the
/// course of its lifetime, it is free to return a different value from
/// multiple invocations of this method. However, note that changes in the
/// maximum level will **only** be reflected after the callsite [`Interest`]
/// cache is rebuilt, by calling the
/// [`tracing_core::callsite::rebuild_interest_cache`][rebuild] function.
/// Therefore, if the `Filter will change the value returned by this
/// method, it is responsible for ensuring that
/// [`rebuild_interest_cache`][rebuild] is called after the value of the max
/// level changes.
///
/// ## Default Implementation
///
/// By default, this method returns `None`, indicating that the maximum
/// level is unknown.
///
/// [level]: tracing_core::metadata::Level
/// [`LevelFilter`]: crate::filter::LevelFilter
/// [`Interest`]: tracing_core::subscriber::Interest
/// [rebuild]: tracing_core::callsite::rebuild_interest_cache
fn max_level_hint(&self) -> Option<LevelFilter> {
None
}
/// Notifies this filter that a new span was constructed with the given
/// `Attributes` and `Id`.
///
/// By default, this method does nothing. `Filter` implementations that
/// need to be notified when new spans are created can override this
/// method.
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
let _ = (attrs, id, ctx);
}
/// Notifies this filter that a span with the given `Id` recorded the given
/// `values`.
///
/// By default, this method does nothing. `Filter` implementations that
/// need to be notified when new spans are created can override this
/// method.
fn on_record(&self, id: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
let _ = (id, values, ctx);
}
/// Notifies this filter that a span with the given ID was entered.
///
/// By default, this method does nothing. `Filter` implementations that
/// need to be notified when a span is entered can override this method.
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
let _ = (id, ctx);
}
/// Notifies this filter that a span with the given ID was exited.
///
/// By default, this method does nothing. `Filter` implementations that
/// need to be notified when a span is exited can override this method.
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
let _ = (id, ctx);
}
/// Notifies this filter that a span with the given ID has been closed.
///
/// By default, this method does nothing. `Filter` implementations that
/// need to be notified when a span is closed can override this method.
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
let _ = (id, ctx);
}
}
}
/// Extension trait adding a `with(Layer)` combinator to `Subscriber`s.
pub trait SubscriberExt: Subscriber + crate::sealed::Sealed {
/// Wraps `self` with the provided `layer`.
fn with<L>(self, layer: L) -> Layered<L, Self>
where
L: Layer<Self>,
Self: Sized,
{
layer.with_subscriber(self)
}
}
/// A layer that does nothing.
#[derive(Clone, Debug, Default)]
pub struct Identity {
_p: (),
}
// === impl Layer ===
#[derive(Clone, Copy)]
pub(crate) struct NoneLayerMarker(());
static NONE_LAYER_MARKER: NoneLayerMarker = NoneLayerMarker(());
/// Is a type implementing `Layer` `Option::<_>::None`?
pub(crate) fn layer_is_none<L, S>(layer: &L) -> bool
where
L: Layer<S>,
S: Subscriber,
{
unsafe {
// Safety: we're not actually *doing* anything with this pointer ---
// this only care about the `Option`, which is essentially being used
// as a bool. We can rely on the pointer being valid, because it is
// a crate-private type, and is only returned by the `Layer` impl
// for `Option`s. However, even if the layer *does* decide to be
// evil and give us an invalid pointer here, that's fine, because we'll
// never actually dereference it.
layer.downcast_raw(TypeId::of::<NoneLayerMarker>())
}
.is_some()
}
/// Is a type implementing `Subscriber` `Option::<_>::None`?
pub(crate) fn subscriber_is_none<S>(subscriber: &S) -> bool
where
S: Subscriber,
{
unsafe {
// Safety: we're not actually *doing* anything with this pointer ---
// this only care about the `Option`, which is essentially being used
// as a bool. We can rely on the pointer being valid, because it is
// a crate-private type, and is only returned by the `Layer` impl
// for `Option`s. However, even if the subscriber *does* decide to be
// evil and give us an invalid pointer here, that's fine, because we'll
// never actually dereference it.
subscriber.downcast_raw(TypeId::of::<NoneLayerMarker>())
}
.is_some()
}
impl<L, S> Layer<S> for Option<L>
where
L: Layer<S>,
S: Subscriber,
{
fn on_layer(&mut self, subscriber: &mut S) {
if let Some(ref mut layer) = self {
layer.on_layer(subscriber)
}
}
#[inline]
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_new_span(attrs, id, ctx)
}
}
#[inline]
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
match self {
Some(ref inner) => inner.register_callsite(metadata),
None => Interest::always(),
}
}
#[inline]
fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
match self {
Some(ref inner) => inner.enabled(metadata, ctx),
None => true,
}
}
#[inline]
fn max_level_hint(&self) -> Option<LevelFilter> {
match self {
Some(ref inner) => inner.max_level_hint(),
None => {
// There is no inner layer, so this layer will
// never enable anything.
Some(LevelFilter::OFF)
}
}
}
#[inline]
fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_record(span, values, ctx);
}
}
#[inline]
fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_follows_from(span, follows, ctx);
}
}
#[inline]
fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
match self {
Some(ref inner) => inner.event_enabled(event, ctx),
None => true,
}
}
#[inline]
fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_event(event, ctx);
}
}
#[inline]
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_enter(id, ctx);
}
}
#[inline]
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_exit(id, ctx);
}
}
#[inline]
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_close(id, ctx);
}
}
#[inline]
fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) {
if let Some(ref inner) = self {
inner.on_id_change(old, new, ctx)
}
}
#[doc(hidden)]
#[inline]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
if id == TypeId::of::<Self>() {
Some(self as *const _ as *const ())
} else if id == TypeId::of::<NoneLayerMarker>() && self.is_none() {
Some(&NONE_LAYER_MARKER as *const _ as *const ())
} else {
self.as_ref().and_then(|inner| inner.downcast_raw(id))
}
}
}
feature! {
#![any(feature = "std", feature = "alloc")]
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
macro_rules! layer_impl_body {
() => {
#[inline]
fn on_register_dispatch(&self, subscriber: &Dispatch) {
self.deref().on_register_dispatch(subscriber);
}
#[inline]
fn on_layer(&mut self, subscriber: &mut S) {
self.deref_mut().on_layer(subscriber);
}
#[inline]
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
self.deref().on_new_span(attrs, id, ctx)
}
#[inline]
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
self.deref().register_callsite(metadata)
}
#[inline]
fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
self.deref().enabled(metadata, ctx)
}
#[inline]
fn max_level_hint(&self) -> Option<LevelFilter> {
self.deref().max_level_hint()
}
#[inline]
fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
self.deref().on_record(span, values, ctx)
}
#[inline]
fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
self.deref().on_follows_from(span, follows, ctx)
}
#[inline]
fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
self.deref().event_enabled(event, ctx)
}
#[inline]
fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
self.deref().on_event(event, ctx)
}
#[inline]
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
self.deref().on_enter(id, ctx)
}
#[inline]
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
self.deref().on_exit(id, ctx)
}
#[inline]
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
self.deref().on_close(id, ctx)
}
#[inline]
fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) {
self.deref().on_id_change(old, new, ctx)
}
#[doc(hidden)]
#[inline]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
self.deref().downcast_raw(id)
}
};
}
impl<L, S> Layer<S> for Box<L>
where
L: Layer<S>,
S: Subscriber,
{
layer_impl_body! {}
}
impl<S> Layer<S> for Box<dyn Layer<S> + Send + Sync>
where
S: Subscriber,
{
layer_impl_body! {}
}
impl<S, L> Layer<S> for Vec<L>
where
L: Layer<S>,
S: Subscriber,
{
fn on_layer(&mut self, subscriber: &mut S) {
for l in self {
l.on_layer(subscriber);
}
}
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
// Return highest level of interest.
let mut interest = Interest::never();
for l in self {
let new_interest = l.register_callsite(metadata);
if (interest.is_sometimes() && new_interest.is_always())
|| (interest.is_never() && !new_interest.is_never())
{
interest = new_interest;
}
}
interest
}
fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
self.iter().all(|l| l.enabled(metadata, ctx.clone()))
}
fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
self.iter().all(|l| l.event_enabled(event, ctx.clone()))
}
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
for l in self {
l.on_new_span(attrs, id, ctx.clone());
}
}
fn max_level_hint(&self) -> Option<LevelFilter> {
// Default to `OFF` if there are no inner layers.
let mut max_level = LevelFilter::OFF;
for l in self {
// NOTE(eliza): this is slightly subtle: if *any* layer
// returns `None`, we have to return `None`, assuming there is
// no max level hint, since that particular layer cannot
// provide a hint.
let hint = l.max_level_hint()?;
max_level = core::cmp::max(hint, max_level);
}
Some(max_level)
}
fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
for l in self {
l.on_record(span, values, ctx.clone())
}
}
fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
for l in self {
l.on_follows_from(span, follows, ctx.clone());
}
}
fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
for l in self {
l.on_event(event, ctx.clone());
}
}
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
for l in self {
l.on_enter(id, ctx.clone());
}
}
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
for l in self {
l.on_exit(id, ctx.clone());
}
}
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
for l in self {
l.on_close(id.clone(), ctx.clone());
}
}
#[doc(hidden)]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
// If downcasting to `Self`, return a pointer to `self`.
if id == TypeId::of::<Self>() {
return Some(self as *const _ as *const ());
}
// Someone is looking for per-layer filters. But, this `Vec`
// might contain layers with per-layer filters *and*
// layers without filters. It should only be treated as a
// per-layer-filtered layer if *all* its layers have
// per-layer filters.
// XXX(eliza): it's a bummer we have to do this linear search every
// time. It would be nice if this could be cached, but that would
// require replacing the `Vec` impl with an impl for a newtype...
if filter::is_plf_downcast_marker(id) && self.iter().any(|s| s.downcast_raw(id).is_none()) {
return None;
}
// Otherwise, return the first child of `self` that downcaasts to
// the selected type, if any.
// XXX(eliza): hope this is reasonable lol
self.iter().find_map(|l| l.downcast_raw(id))
}
}
}
// === impl SubscriberExt ===
impl<S: Subscriber> crate::sealed::Sealed for S {}
impl<S: Subscriber> SubscriberExt for S {}
// === impl Identity ===
impl<S: Subscriber> Layer<S> for Identity {}
impl Identity {
/// Returns a new `Identity` layer.
pub fn new() -> Self {
Self { _p: () }
}
}