blob: eeae1b508fc588dea49e92458946803f8bfce175 [file] [log] [blame]
/* ----------------------------------------------------------------------------
Copyright (c) 2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* ----------------------------------------------------------------------------
Implements a cache of segments to avoid expensive OS calls and to reuse
the commit_mask to optimize the commit/decommit calls.
The full memory map of all segments is also implemented here.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "./bitmap.h" // atomic bitmap
//#define MI_CACHE_DISABLE 1 // define to completely disable the segment cache
#define MI_CACHE_FIELDS (16)
#define MI_CACHE_MAX (MI_BITMAP_FIELD_BITS*MI_CACHE_FIELDS) // 1024 on 64-bit
#define BITS_SET() MI_ATOMIC_VAR_INIT(UINTPTR_MAX)
#define MI_CACHE_BITS_SET MI_INIT16(BITS_SET) // note: update if MI_CACHE_FIELDS changes
typedef struct mi_cache_slot_s {
void* p;
size_t memid;
bool is_pinned;
mi_commit_mask_t commit_mask;
mi_commit_mask_t decommit_mask;
_Atomic(mi_msecs_t) expire;
} mi_cache_slot_t;
static mi_decl_cache_align mi_cache_slot_t cache[MI_CACHE_MAX]; // = 0
static mi_decl_cache_align mi_bitmap_field_t cache_unavailable[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET }; // zero bit = available!
static mi_decl_cache_align mi_bitmap_field_t cache_unavailable_large[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET };
static mi_decl_cache_align mi_bitmap_field_t cache_inuse[MI_CACHE_FIELDS]; // zero bit = free
static bool mi_cdecl mi_segment_cache_is_suitable(mi_bitmap_index_t bitidx, void* arg) {
mi_arena_id_t req_arena_id = *((mi_arena_id_t*)arg);
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
return _mi_arena_memid_is_suitable(slot->memid, req_arena_id);
}
mi_decl_noinline static void* mi_segment_cache_pop_ex(
bool all_suitable,
size_t size, mi_commit_mask_t* commit_mask,
mi_commit_mask_t* decommit_mask, bool large_allowed,
bool* large, bool* is_pinned, bool* is_zero,
mi_arena_id_t _req_arena_id, size_t* memid, mi_os_tld_t* tld)
{
#ifdef MI_CACHE_DISABLE
return NULL;
#else
// only segment blocks
if (size != MI_SEGMENT_SIZE) return NULL;
// numa node determines start field
const int numa_node = _mi_os_numa_node(tld);
size_t start_field = 0;
if (numa_node > 0) {
start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node;
if (start_field >= MI_CACHE_FIELDS) start_field = 0;
}
// find an available slot and make it unavailable
mi_bitmap_index_t bitidx = 0;
bool claimed = false;
mi_arena_id_t req_arena_id = _req_arena_id;
mi_bitmap_pred_fun_t pred_fun = (all_suitable ? NULL : &mi_segment_cache_is_suitable); // cannot pass NULL as the arena may be exclusive itself; todo: do not put exclusive arenas in the cache?
if (large_allowed) { // large allowed?
claimed = _mi_bitmap_try_find_from_claim_pred(cache_unavailable_large, MI_CACHE_FIELDS, start_field, 1, pred_fun, &req_arena_id, &bitidx);
if (claimed) *large = true;
}
if (!claimed) {
claimed = _mi_bitmap_try_find_from_claim_pred (cache_unavailable, MI_CACHE_FIELDS, start_field, 1, pred_fun, &req_arena_id, &bitidx);
if (claimed) *large = false;
}
if (!claimed) return NULL;
// no longer available but still in-use
mi_assert_internal(_mi_bitmap_is_claimed(cache_unavailable, MI_CACHE_FIELDS, 1, bitidx));
mi_assert_internal(_mi_bitmap_is_claimed(cache_unavailable_large, MI_CACHE_FIELDS, 1, bitidx));
mi_assert_internal(_mi_bitmap_is_claimed(cache_inuse, MI_CACHE_FIELDS, 1, bitidx));
// found a slot
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
void* p = slot->p;
*memid = slot->memid;
*is_pinned = slot->is_pinned;
*is_zero = false;
*commit_mask = slot->commit_mask;
*decommit_mask = slot->decommit_mask;
slot->p = NULL;
mi_atomic_storei64_release(&slot->expire,(mi_msecs_t)0);
// mark the slot as free again
_mi_bitmap_unclaim(cache_inuse, MI_CACHE_FIELDS, 1, bitidx);
return p;
#endif
}
mi_decl_noinline void* _mi_segment_cache_pop(size_t size, mi_commit_mask_t* commit_mask, mi_commit_mask_t* decommit_mask, bool large_allowed, bool* large, bool* is_pinned, bool* is_zero, mi_arena_id_t _req_arena_id, size_t* memid, mi_os_tld_t* tld)
{
return mi_segment_cache_pop_ex(false, size, commit_mask, decommit_mask, large_allowed, large, is_pinned, is_zero, _req_arena_id, memid, tld);
}
static mi_decl_noinline void mi_commit_mask_decommit(mi_commit_mask_t* cmask, void* p, size_t total, mi_stats_t* stats)
{
if (mi_commit_mask_is_empty(cmask)) {
// nothing
}
else if (mi_commit_mask_is_full(cmask)) {
// decommit the whole in one call
_mi_os_decommit(p, total, stats);
}
else {
// decommit parts
mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0);
size_t part = total/MI_COMMIT_MASK_BITS;
size_t idx;
size_t count;
mi_commit_mask_foreach(cmask, idx, count) {
void* start = (uint8_t*)p + (idx*part);
size_t size = count*part;
_mi_os_decommit(start, size, stats);
}
mi_commit_mask_foreach_end()
}
mi_commit_mask_create_empty(cmask);
}
#define MI_MAX_PURGE_PER_PUSH (4)
static mi_decl_noinline void mi_segment_cache_purge(bool visit_all, bool force, mi_os_tld_t* tld)
{
MI_UNUSED(tld);
if (!mi_option_is_enabled(mi_option_allow_decommit)) return;
mi_msecs_t now = _mi_clock_now();
size_t purged = 0;
const size_t max_visits = (visit_all ? MI_CACHE_MAX /* visit all */ : MI_CACHE_FIELDS /* probe at most N (=16) slots */);
size_t idx = (visit_all ? 0 : _mi_random_shuffle((uintptr_t)now) % MI_CACHE_MAX /* random start */ );
for (size_t visited = 0; visited < max_visits; visited++,idx++) { // visit N slots
if (idx >= MI_CACHE_MAX) idx = 0; // wrap
mi_cache_slot_t* slot = &cache[idx];
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&slot->expire);
if (expire != 0 && (force || now >= expire)) { // racy read
// seems expired, first claim it from available
purged++;
mi_bitmap_index_t bitidx = mi_bitmap_index_create_from_bit(idx);
if (_mi_bitmap_claim(cache_unavailable, MI_CACHE_FIELDS, 1, bitidx, NULL)) { // no need to check large as those cannot be decommitted anyways
// it was available, we claimed it (and made it unavailable)
mi_assert_internal(_mi_bitmap_is_claimed(cache_unavailable, MI_CACHE_FIELDS, 1, bitidx));
mi_assert_internal(_mi_bitmap_is_claimed(cache_unavailable_large, MI_CACHE_FIELDS, 1, bitidx));
// we can now access it safely
expire = mi_atomic_loadi64_acquire(&slot->expire);
if (expire != 0 && (force || now >= expire)) { // safe read
mi_assert_internal(_mi_bitmap_is_claimed(cache_inuse, MI_CACHE_FIELDS, 1, bitidx));
// still expired, decommit it
mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0);
mi_assert_internal(!mi_commit_mask_is_empty(&slot->commit_mask));
_mi_abandoned_await_readers(); // wait until safe to decommit
// decommit committed parts
// TODO: instead of decommit, we could also free to the OS?
mi_commit_mask_decommit(&slot->commit_mask, slot->p, MI_SEGMENT_SIZE, tld->stats);
mi_commit_mask_create_empty(&slot->decommit_mask);
}
_mi_bitmap_unclaim(cache_unavailable, MI_CACHE_FIELDS, 1, bitidx); // make it available again for a pop
}
if (!visit_all && purged > MI_MAX_PURGE_PER_PUSH) break; // bound to no more than N purge tries per push
}
}
}
void _mi_segment_cache_collect(bool force, mi_os_tld_t* tld) {
if (force) {
// called on `mi_collect(true)` but not on thread termination
_mi_segment_cache_free_all(tld);
}
else {
mi_segment_cache_purge(true /* visit all */, false /* don't force unexpired */, tld);
}
}
void _mi_segment_cache_free_all(mi_os_tld_t* tld) {
mi_commit_mask_t commit_mask;
mi_commit_mask_t decommit_mask;
bool is_pinned;
bool is_zero;
bool is_large;
size_t memid;
const size_t size = MI_SEGMENT_SIZE;
void* p;
do {
// keep popping and freeing the memory
p = mi_segment_cache_pop_ex(true /* all */, size, &commit_mask, &decommit_mask,
true /* allow large */, &is_large, &is_pinned, &is_zero, _mi_arena_id_none(), &memid, tld);
if (p != NULL) {
size_t csize = _mi_commit_mask_committed_size(&commit_mask, size);
if (csize > 0 && !is_pinned) { _mi_stat_decrease(&_mi_stats_main.committed, csize); }
_mi_arena_free(p, size, MI_SEGMENT_ALIGN, 0, memid, is_pinned /* pretend not committed to not double count decommits */, tld->stats);
}
} while (p != NULL);
}
mi_decl_noinline bool _mi_segment_cache_push(void* start, size_t size, size_t memid, const mi_commit_mask_t* commit_mask, const mi_commit_mask_t* decommit_mask, bool is_large, bool is_pinned, mi_os_tld_t* tld)
{
#ifdef MI_CACHE_DISABLE
return false;
#else
// purge expired entries
mi_segment_cache_purge(false /* limit purges to a constant N */, false /* don't force unexpired */, tld);
// only cache normal segment blocks
if (size != MI_SEGMENT_SIZE || ((uintptr_t)start % MI_SEGMENT_ALIGN) != 0) return false;
// Also do not cache arena allocated segments that cannot be decommitted. (as arena allocation is fast)
// This is a common case with reserved huge OS pages.
//
// (note: we could also allow segments that are already fully decommitted but that never happens
// as the first slice is always committed (for the segment metadata))
if (!_mi_arena_is_os_allocated(memid) && is_pinned) return false;
// numa node determines start field
int numa_node = _mi_os_numa_node(NULL);
size_t start_field = 0;
if (numa_node > 0) {
start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count()) * numa_node;
if (start_field >= MI_CACHE_FIELDS) start_field = 0;
}
// find an available slot
mi_bitmap_index_t bitidx;
bool claimed = _mi_bitmap_try_find_from_claim(cache_inuse, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (!claimed) return false;
mi_assert_internal(_mi_bitmap_is_claimed(cache_unavailable, MI_CACHE_FIELDS, 1, bitidx));
mi_assert_internal(_mi_bitmap_is_claimed(cache_unavailable_large, MI_CACHE_FIELDS, 1, bitidx));
#if MI_DEBUG>1
if (is_pinned || is_large) {
mi_assert_internal(mi_commit_mask_is_full(commit_mask));
}
#endif
// set the slot
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
slot->p = start;
slot->memid = memid;
slot->is_pinned = is_pinned;
mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0);
slot->commit_mask = *commit_mask;
slot->decommit_mask = *decommit_mask;
if (!mi_commit_mask_is_empty(commit_mask) && !is_large && !is_pinned && mi_option_is_enabled(mi_option_allow_decommit)) {
long delay = mi_option_get(mi_option_segment_decommit_delay);
if (delay == 0) {
_mi_abandoned_await_readers(); // wait until safe to decommit
mi_commit_mask_decommit(&slot->commit_mask, start, MI_SEGMENT_SIZE, tld->stats);
mi_commit_mask_create_empty(&slot->decommit_mask);
}
else {
mi_atomic_storei64_release(&slot->expire, _mi_clock_now() + delay);
}
}
// make it available
_mi_bitmap_unclaim((is_large ? cache_unavailable_large : cache_unavailable), MI_CACHE_FIELDS, 1, bitidx);
return true;
#endif
}
/* -----------------------------------------------------------
The following functions are to reliably find the segment or
block that encompasses any pointer p (or NULL if it is not
in any of our segments).
We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB)
set to 1 if it contains the segment meta data.
----------------------------------------------------------- */
#if (MI_INTPTR_SIZE==8)
#define MI_MAX_ADDRESS ((size_t)40 << 40) // 20TB
#else
#define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb
#endif
#define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE)
#define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8)
#define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE)
static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE + 1]; // 2KiB per TB with 64MiB segments
static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) {
mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE?
if ((uintptr_t)segment >= MI_MAX_ADDRESS) {
*bitidx = 0;
return MI_SEGMENT_MAP_WSIZE;
}
else {
const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_SIZE;
*bitidx = segindex % MI_INTPTR_BITS;
const size_t mapindex = segindex / MI_INTPTR_BITS;
mi_assert_internal(mapindex < MI_SEGMENT_MAP_WSIZE);
return mapindex;
}
}
void _mi_segment_map_allocated_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE);
if (index==MI_SEGMENT_MAP_WSIZE) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask | ((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
void _mi_segment_map_freed_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE);
if (index == MI_SEGMENT_MAP_WSIZE) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask & ~((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
// Determine the segment belonging to a pointer or NULL if it is not in a valid segment.
static mi_segment_t* _mi_segment_of(const void* p) {
if (p == NULL) return NULL;
mi_segment_t* segment = _mi_ptr_segment(p);
mi_assert_internal(segment != NULL);
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
// fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge
const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) {
return segment; // yes, allocated by us
}
if (index==MI_SEGMENT_MAP_WSIZE) return NULL;
// TODO: maintain max/min allocated range for efficiency for more efficient rejection of invalid pointers?
// search downwards for the first segment in case it is an interior pointer
// could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough
// valid huge objects
// note: we could maintain a lowest index to speed up the path for invalid pointers?
size_t lobitidx;
size_t loindex;
uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1);
if (lobits != 0) {
loindex = index;
lobitidx = mi_bsr(lobits); // lobits != 0
}
else if (index == 0) {
return NULL;
}
else {
mi_assert_internal(index > 0);
uintptr_t lomask = mask;
loindex = index;
do {
loindex--;
lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex]);
} while (lomask != 0 && loindex > 0);
if (lomask == 0) return NULL;
lobitidx = mi_bsr(lomask); // lomask != 0
}
mi_assert_internal(loindex < MI_SEGMENT_MAP_WSIZE);
// take difference as the addresses could be larger than the MAX_ADDRESS space.
size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE;
segment = (mi_segment_t*)((uint8_t*)segment - diff);
if (segment == NULL) return NULL;
mi_assert_internal((void*)segment < p);
bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(cookie_ok);
if mi_unlikely(!cookie_ok) return NULL;
if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range
mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment));
return segment;
}
// Is this a valid pointer in our heap?
static bool mi_is_valid_pointer(const void* p) {
return (_mi_segment_of(p) != NULL);
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return mi_is_valid_pointer(p);
}
/*
// Return the full segment range belonging to a pointer
static void* mi_segment_range_of(const void* p, size_t* size) {
mi_segment_t* segment = _mi_segment_of(p);
if (segment == NULL) {
if (size != NULL) *size = 0;
return NULL;
}
else {
if (size != NULL) *size = segment->segment_size;
return segment;
}
mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size);
mi_reset_delayed(tld);
mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld));
return page;
}
*/