blob: cd5ca988f7e031c1765a42a7cfb990572ab81479 [file] [log] [blame]
use crate::marker::Unpin;
use crate::pin::Pin;
/// The result of a coroutine resumption.
///
/// This enum is returned from the `Coroutine::resume` method and indicates the
/// possible return values of a coroutine. Currently this corresponds to either
/// a suspension point (`Yielded`) or a termination point (`Complete`).
#[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
#[cfg_attr(bootstrap, lang = "generator_state")]
#[cfg_attr(not(bootstrap), lang = "coroutine_state")]
#[unstable(feature = "coroutine_trait", issue = "43122")]
pub enum CoroutineState<Y, R> {
/// The coroutine suspended with a value.
///
/// This state indicates that a coroutine has been suspended, and typically
/// corresponds to a `yield` statement. The value provided in this variant
/// corresponds to the expression passed to `yield` and allows coroutines to
/// provide a value each time they yield.
Yielded(Y),
/// The coroutine completed with a return value.
///
/// This state indicates that a coroutine has finished execution with the
/// provided value. Once a coroutine has returned `Complete` it is
/// considered a programmer error to call `resume` again.
Complete(R),
}
/// The trait implemented by builtin coroutine types.
///
/// Coroutines are currently an
/// experimental language feature in Rust. Added in [RFC 2033] coroutines are
/// currently intended to primarily provide a building block for async/await
/// syntax but will likely extend to also providing an ergonomic definition for
/// iterators and other primitives.
///
/// The syntax and semantics for coroutines is unstable and will require a
/// further RFC for stabilization. At this time, though, the syntax is
/// closure-like:
///
/// ```rust
/// #![cfg_attr(bootstrap, feature(generators))]
/// #![cfg_attr(not(bootstrap), feature(coroutines))]
/// #![feature(coroutine_trait)]
///
/// use std::ops::{Coroutine, CoroutineState};
/// use std::pin::Pin;
///
/// fn main() {
/// let mut coroutine = || {
/// yield 1;
/// "foo"
/// };
///
/// match Pin::new(&mut coroutine).resume(()) {
/// CoroutineState::Yielded(1) => {}
/// _ => panic!("unexpected return from resume"),
/// }
/// match Pin::new(&mut coroutine).resume(()) {
/// CoroutineState::Complete("foo") => {}
/// _ => panic!("unexpected return from resume"),
/// }
/// }
/// ```
///
/// More documentation of coroutines can be found in the [unstable book].
///
/// [RFC 2033]: https://github.com/rust-lang/rfcs/pull/2033
/// [unstable book]: ../../unstable-book/language-features/coroutines.html
#[cfg_attr(bootstrap, lang = "generator")]
#[cfg_attr(not(bootstrap), lang = "coroutine")]
#[unstable(feature = "coroutine_trait", issue = "43122")]
#[fundamental]
pub trait Coroutine<R = ()> {
/// The type of value this coroutine yields.
///
/// This associated type corresponds to the `yield` expression and the
/// values which are allowed to be returned each time a coroutine yields.
/// For example an iterator-as-a-coroutine would likely have this type as
/// `T`, the type being iterated over.
type Yield;
/// The type of value this coroutine returns.
///
/// This corresponds to the type returned from a coroutine either with a
/// `return` statement or implicitly as the last expression of a coroutine
/// literal. For example futures would use this as `Result<T, E>` as it
/// represents a completed future.
type Return;
/// Resumes the execution of this coroutine.
///
/// This function will resume execution of the coroutine or start execution
/// if it hasn't already. This call will return back into the coroutine's
/// last suspension point, resuming execution from the latest `yield`. The
/// coroutine will continue executing until it either yields or returns, at
/// which point this function will return.
///
/// # Return value
///
/// The `CoroutineState` enum returned from this function indicates what
/// state the coroutine is in upon returning. If the `Yielded` variant is
/// returned then the coroutine has reached a suspension point and a value
/// has been yielded out. Coroutines in this state are available for
/// resumption at a later point.
///
/// If `Complete` is returned then the coroutine has completely finished
/// with the value provided. It is invalid for the coroutine to be resumed
/// again.
///
/// # Panics
///
/// This function may panic if it is called after the `Complete` variant has
/// been returned previously. While coroutine literals in the language are
/// guaranteed to panic on resuming after `Complete`, this is not guaranteed
/// for all implementations of the `Coroutine` trait.
fn resume(self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return>;
}
#[unstable(feature = "coroutine_trait", issue = "43122")]
impl<G: ?Sized + Coroutine<R>, R> Coroutine<R> for Pin<&mut G> {
type Yield = G::Yield;
type Return = G::Return;
fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
G::resume((*self).as_mut(), arg)
}
}
#[unstable(feature = "coroutine_trait", issue = "43122")]
impl<G: ?Sized + Coroutine<R> + Unpin, R> Coroutine<R> for &mut G {
type Yield = G::Yield;
type Return = G::Return;
fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
G::resume(Pin::new(&mut *self), arg)
}
}